本文整理汇总了Python中tensorflow.python.ops.gen_math_ops.sqrt方法的典型用法代码示例。如果您正苦于以下问题:Python gen_math_ops.sqrt方法的具体用法?Python gen_math_ops.sqrt怎么用?Python gen_math_ops.sqrt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops.sqrt方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: sqrt
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import sqrt [as 别名]
def sqrt(x, name=None):
r"""Computes square root of x element-wise.
I.e., \\(y = \sqrt{x} = x^{1/2}\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sqrt", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sqrt = gen_math_ops.sqrt(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sqrt, dense_shape=x.dense_shape)
else:
return gen_math_ops.sqrt(x, name=name)
示例2: sqrt
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import sqrt [as 别名]
def sqrt(x, name=None):
"""Computes square root of x element-wise.
I.e., \\(y = \sqrt{x} = x^{1/2}\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sqrt", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sqrt = gen_math_ops.sqrt(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sqrt, dense_shape=x.dense_shape)
else:
return gen_math_ops.sqrt(x, name=name)
示例3: sqrt
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import sqrt [as 别名]
def sqrt(x, name=None):
"""Computes square root of x element-wise.
I.e., \\(y = \sqrt{x} = x^{1/2}\\).
Args:
x: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
`float32`, `float64`, `complex64`, `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.
"""
with ops.name_scope(name, "Sqrt", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
x_sqrt = gen_math_ops.sqrt(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_sqrt, shape=x.shape)
else:
return gen_math_ops.sqrt(x, name=name)
示例4: complex_abs
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import sqrt [as 别名]
def complex_abs(x, name=None):
r"""Computes the complex absolute value of a tensor.
Given a tensor `x` of complex numbers, this operation returns a tensor of type
`float32` or `float64` that is the absolute value of each element in `x`. All
elements in `x` must be complex numbers of the form \\(a + bj\\). The
absolute value is computed as \\( \sqrt{a^2 + b^2}\\).
For example:
```
# tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]
```
Args:
x: A `Tensor` of type `complex64` or `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `float32` or `float64`.
"""
return gen_math_ops.complex_abs(x, Tout=x.dtype.real_dtype, name=name)
示例5: call
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import sqrt [as 别名]
def call(self, inputs):
inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
if common_shapes.rank(inputs) is not 2:
raise ValueError('`StressIntensityRange` only takes "rank 2" inputs.')
output = gen_math_ops.mul(self.kernel*inputs[:,1], gen_math_ops.sqrt(np.pi*inputs[:, 0]))
output = array_ops.reshape(output, (array_ops.shape(output)[0], 1))
# outputs should be (None, 1), so it is still rank = 2
return output
示例6: abs
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import sqrt [as 别名]
def abs(x, name=None):
r"""Computes the absolute value of a tensor.
Given a tensor `x` of complex numbers, this operation returns a tensor of type
`float32` or `float64` that is the absolute value of each element in `x`. All
elements in `x` must be complex numbers of the form \\(a + bj\\). The
absolute value is computed as \\( \sqrt{a^2 + b^2}\\). For example:
```python
x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
tf.abs(x) # [5.25594902, 6.60492229]
```
Args:
x: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`,
`int64`, `complex64` or `complex128`.
name: A name for the operation (optional).
Returns:
A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
values.
Note, for `complex64` or `complex128' input, the returned `Tensor` will be
of type `float32` or `float64`, respectively.
"""
with ops.name_scope(name, "Abs", [x]) as name:
if isinstance(x, sparse_tensor.SparseTensor):
if x.values.dtype in (dtypes.complex64, dtypes.complex128):
x_abs = gen_math_ops._complex_abs(
x.values, Tout=x.values.dtype.real_dtype, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
x_abs = gen_math_ops._abs(x.values, name=name)
return sparse_tensor.SparseTensor(
indices=x.indices, values=x_abs, dense_shape=x.dense_shape)
else:
x = ops.convert_to_tensor(x, name="x")
if x.dtype in (dtypes.complex64, dtypes.complex128):
return gen_math_ops._complex_abs(x, Tout=x.dtype.real_dtype, name=name)
return gen_math_ops._abs(x, name=name)
# pylint: enable=g-docstring-has-escape
# pylint: disable=redefined-builtin
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:46,代码来源:math_ops.py