本文整理汇总了Python中tensorflow.python.ops.gen_math_ops.not_equal方法的典型用法代码示例。如果您正苦于以下问题:Python gen_math_ops.not_equal方法的具体用法?Python gen_math_ops.not_equal怎么用?Python gen_math_ops.not_equal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops.not_equal方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: count_nonzero
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import not_equal [as 别名]
def count_nonzero(input_tensor,
axis=None,
keep_dims=False,
dtype=dtypes.int64,
name=None,
reduction_indices=None):
"""Computes number of nonzero elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
**NOTE** Floating point comparison to zero is done by exact floating point
equality check. Small values are **not** rounded to zero for purposes of
the nonzero check.
For example:
```python
# 'x' is [[0, 1, 0]
# [1, 1, 0]]
tf.count_nonzero(x) ==> 3
tf.count_nonzero(x, 0) ==> [1, 2, 0]
tf.count_nonzero(x, 1) ==> [1, 2]
tf.count_nonzero(x, 1, keep_dims=True) ==> [[1], [2]]
tf.count_nonzero(x, [0, 1]) ==> 3
```
Args:
input_tensor: The tensor to reduce. Should be of numeric type, or `bool`.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
dtype: The output dtype; defaults to `tf.int64`.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor (number of nonzero values).
"""
with ops.name_scope(name, "count_nonzero", [input_tensor]):
input_tensor = ops.convert_to_tensor(input_tensor, name="input_tensor")
zero = input_tensor.dtype.as_numpy_dtype()
return cast(
reduce_sum(
# int64 reduction happens on GPU
to_int64(gen_math_ops.not_equal(input_tensor, zero)),
axis=axis,
keep_dims=keep_dims,
reduction_indices=reduction_indices),
dtype=dtype)
示例2: count_nonzero
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import not_equal [as 别名]
def count_nonzero(input_tensor, reduction_indices=None, keep_dims=False,
dtype=dtypes.int64, name=None):
"""Computes number of nonzero elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `reduction_indices`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `reduction_indices` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
**NOTE** Floating point comparison to zero is done by exact floating point
equality check. Small values are **not** rounded to zero for purposes of
the nonzero check.
For example:
```python
# 'x' is [[0, 1, 0]
# [1, 1, 0]]
tf.count_nonzero(x) ==> 3
tf.count_nonzero(x, 0) ==> [1, 2, 0]
tf.count_nonzero(x, 1) ==> [1, 2]
tf.count_nonzero(x, 1, keep_dims=True) ==> [[1], [2]]
tf.count_nonzero(x, [0, 1]) ==> 3
```
Args:
input_tensor: The tensor to reduce. Should be of numeric type, or `bool`.
reduction_indices: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
dtype: The output dtype; defaults to `tf.int64`.
name: A name for the operation (optional).
Returns:
The reduced tensor (number of nonzero values).
"""
with ops.name_scope(name, "count_nonzero", [input_tensor]):
input_tensor = ops.convert_to_tensor(input_tensor, name="input_tensor")
zero = input_tensor.dtype.as_numpy_dtype()
return cast(
reduce_sum(
# int64 reduction happens on GPU
to_int64(gen_math_ops.not_equal(input_tensor, zero)),
reduction_indices=reduction_indices,
keep_dims=keep_dims),
dtype=dtype)
示例3: count_nonzero
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import not_equal [as 别名]
def count_nonzero(input_tensor,
axis=None,
keep_dims=False,
dtype=dtypes.int64,
name=None,
reduction_indices=None):
"""Computes number of nonzero elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
**NOTE** Floating point comparison to zero is done by exact floating point
equality check. Small values are **not** rounded to zero for purposes of
the nonzero check.
For example:
```python
x = tf.constant([[0, 1, 0], [1, 1, 0]])
tf.count_nonzero(x) # 3
tf.count_nonzero(x, 0) # [1, 2, 0]
tf.count_nonzero(x, 1) # [1, 2]
tf.count_nonzero(x, 1, keep_dims=True) # [[1], [2]]
tf.count_nonzero(x, [0, 1]) # 3
```
Args:
input_tensor: The tensor to reduce. Should be of numeric type, or `bool`.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions. Must be in the range
`[-rank(input_tensor), rank(input_tensor))`.
keep_dims: If true, retains reduced dimensions with length 1.
dtype: The output dtype; defaults to `tf.int64`.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor (number of nonzero values).
"""
with ops.name_scope(name, "count_nonzero", [input_tensor]):
input_tensor = ops.convert_to_tensor(input_tensor, name="input_tensor")
zero = input_tensor.dtype.as_numpy_dtype()
return cast(
reduce_sum(
# int64 reduction happens on GPU
to_int64(gen_math_ops.not_equal(input_tensor, zero)),
axis=axis,
keep_dims=keep_dims,
reduction_indices=reduction_indices),
dtype=dtype)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:57,代码来源:math_ops.py