本文整理汇总了Python中tensorflow.python.ops.gen_math_ops.greater方法的典型用法代码示例。如果您正苦于以下问题:Python gen_math_ops.greater方法的具体用法?Python gen_math_ops.greater怎么用?Python gen_math_ops.greater使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops.greater方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __while_loop
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import greater [as 别名]
def __while_loop(self, b, a, d, n, seed):
def __cond(w, e, bool_mask, b, a, d):
return math_ops.reduce_any(bool_mask)
def __body(w_, e_, bool_mask, b, a, d):
e = math_ops.cast(Beta((self.__mf - 1) / 2, (self.__mf - 1) / 2).sample(
shape, seed=seed), dtype=self.dtype)
u = random_ops.random_uniform(shape, dtype=self.dtype, seed=seed)
w = (1 - (1 + b) * e) / (1 - (1 - b) * e)
t = (2 * a * b) / (1 - (1 - b) * e)
accept = gen_math_ops.greater(((self.__mf - 1) * math_ops.log(t) - t + d), math_ops.log(u))
reject = gen_math_ops.logical_not(accept)
w_ = array_ops.where(gen_math_ops.logical_and(bool_mask, accept), w, w_)
e_ = array_ops.where(gen_math_ops.logical_and(bool_mask, accept), e, e_)
bool_mask = array_ops.where(gen_math_ops.logical_and(bool_mask, accept), reject, bool_mask)
return w_, e_, bool_mask, b, a, d
shape = array_ops.concat([[n], self.batch_shape_tensor()[:-1], [1]], 0)
b, a, d = [gen_array_ops.tile(array_ops.expand_dims(e, axis=0), [n] + [1] * len(e.shape)) for e in (b, a, d)]
w, e, bool_mask, b, a, d = control_flow_ops.while_loop(__cond, __body,
[array_ops.zeros_like(b, dtype=self.dtype),
array_ops.zeros_like(b, dtype=self.dtype),
array_ops.ones_like(b, dtypes.bool),
b, a, d])
return e, w
示例2: bincount
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import greater [as 别名]
def bincount(arr,
weights=None,
minlength=None,
maxlength=None,
dtype=dtypes.int32):
"""Counts the number of occurrences of each value in an integer array.
If `minlength` and `maxlength` are not given, returns a vector with length
`tf.reduce_max(arr) + 1` if `arr` is non-empty, and length 0 otherwise.
If `weights` are non-None, then index `i` of the output stores the sum of the
value in `weights` at each index where the corresponding value in `arr` is
`i`.
Args:
arr: An int32 tensor of non-negative values.
weights: If non-None, must be the same shape as arr. For each value in
`arr`, the bin will be incremented by the corresponding weight instead
of 1.
minlength: If given, ensures the output has length at least `minlength`,
padding with zeros at the end if necessary.
maxlength: If given, skips values in `arr` that are equal or greater than
`maxlength`, ensuring that the output has length at most `maxlength`.
dtype: If `weights` is None, determines the type of the output bins.
Returns:
A vector with the same dtype as `weights` or the given `dtype`. The bin
values.
"""
arr = ops.convert_to_tensor(arr, name="arr", dtype=dtypes.int32)
array_is_nonempty = reduce_prod(array_ops.shape(arr)) > 0
output_size = cast(array_is_nonempty, dtypes.int32) * (reduce_max(arr) + 1)
if minlength is not None:
minlength = ops.convert_to_tensor(
minlength, name="minlength", dtype=dtypes.int32)
output_size = gen_math_ops.maximum(minlength, output_size)
if maxlength is not None:
maxlength = ops.convert_to_tensor(
maxlength, name="maxlength", dtype=dtypes.int32)
output_size = gen_math_ops.minimum(maxlength, output_size)
weights = (ops.convert_to_tensor(weights, name="weights")
if weights is not None else constant_op.constant([], dtype))
return gen_math_ops.bincount(arr, output_size, weights)