本文整理汇总了Python中tensorflow.python.ops.gen_math_ops._prod方法的典型用法代码示例。如果您正苦于以下问题:Python gen_math_ops._prod方法的具体用法?Python gen_math_ops._prod怎么用?Python gen_math_ops._prod使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops._prod方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: size_internal
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _prod [as 别名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
示例2: size_internal
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _prod [as 别名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
示例3: reduce_prod
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _prod [as 别名]
def reduce_prod(input_tensor, reduction_indices=None, keep_dims=False,
name=None):
"""Computes the product of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `reduction_indices`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `reduction_indices` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
reduction_indices: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
Returns:
The reduced tensor.
"""
return gen_math_ops._prod(input_tensor, _ReductionDims(input_tensor,
reduction_indices),
keep_dims, name=name)
示例4: size_internal
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _prod [as 别名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(input, (sparse_tensor.SparseTensor,
sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:27,代码来源:array_ops.py
示例5: reduce_prod
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _prod [as 别名]
def reduce_prod(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the product of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.prod
@end_compatibility
"""
return gen_math_ops._prod(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
示例6: reduce_prod
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _prod [as 别名]
def reduce_prod(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the product of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions. Must be in the range
`[-rank(input_tensor), rank(input_tensor))`.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.prod
@end_compatibility
"""
return gen_math_ops._prod(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:38,代码来源:math_ops.py