本文整理汇总了Python中tensorflow.python.ops.gen_math_ops._complex方法的典型用法代码示例。如果您正苦于以下问题:Python gen_math_ops._complex方法的具体用法?Python gen_math_ops._complex怎么用?Python gen_math_ops._complex使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops._complex方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: complex
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 别名]
def complex(real, imag, name=None):
r"""Converts two real numbers to a complex number.
Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.
The input tensors `real` and `imag` must have the same shape.
For example:
```
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor`. Must be one of the following types: `float32`,
`float64`.
imag: A `Tensor`. Must have the same type as `real`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64` or `complex128`.
"""
real = ops.convert_to_tensor(real, name="real")
imag = ops.convert_to_tensor(imag, name="imag")
with ops.name_scope(name, "Complex", [real, imag]) as name:
input_types = (real.dtype, imag.dtype)
if input_types == (dtypes.float64, dtypes.float64):
Tout = dtypes.complex128
elif input_types == (dtypes.float32, dtypes.float32):
Tout = dtypes.complex64
else:
raise TypeError("real and imag have incorrect types: "
"{} {}".format(real.dtype.name, imag.dtype.name))
return gen_math_ops._complex(real, imag, Tout=Tout, name=name)
示例2: complex
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 别名]
def complex(real, imag, name=None):
r"""Converts two real numbers to a complex number.
Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.
The input tensors `real` and `imag` must have the same shape.
For example:
```
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor`. Must be one of the following types: `float32`,
`float64`.
imag: A `Tensor`. Must have the same type as `real`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64` or `complex128`.
"""
real = ops.convert_to_tensor(real, name="real")
imag = ops.convert_to_tensor(imag, name="imag")
with ops.name_scope(name, "Complex", [real, imag]) as name:
input_types = (real.dtype, imag.dtype)
if input_types == (dtypes.float64, dtypes.float64):
Tout = dtypes.complex128
elif input_types == (dtypes.float32, dtypes.float32):
Tout = dtypes.complex64
else:
raise TypeError("real and imag have incorrect types: "
"{} {}".format(real.dtype.name,
imag.dtype.name))
return gen_math_ops._complex(real, imag, Tout=Tout, name=name)
示例3: complex
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 别名]
def complex(real, imag, name=None):
"""Converts two real numbers to a complex number.
Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.
The input tensors `real` and `imag` must have the same shape.
For example:
```
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor`. Must be one of the following types: `float32`, `float64`.
imag: A `Tensor`. Must have the same type as `real`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64` or `complex128`.
"""
real = ops.convert_to_tensor(real, name="real")
imag = ops.convert_to_tensor(imag, name="imag")
with ops.name_scope(name, "Complex", [real, imag]) as name:
input_types = (real.dtype, imag.dtype)
if input_types == (dtypes.float64, dtypes.float64):
Tout = dtypes.complex128
elif input_types == (dtypes.float32, dtypes.float32):
Tout = dtypes.complex64
else:
raise TypeError("real and imag have incorrect types: "
"{} {}".format(real.dtype.name, imag.dtype.name))
return gen_math_ops._complex(real, imag, Tout=Tout, name=name)
示例4: complex
# 需要导入模块: from tensorflow.python.ops import gen_math_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_math_ops import _complex [as 别名]
def complex(real, imag, name=None):
r"""Converts two real numbers to a complex number.
Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.
The input tensors `real` and `imag` must have the same shape.
For example:
```python
real = tf.constant([2.25, 3.25])
imag = tf.constant([4.75, 5.75])
tf.complex(real, imag) # [[2.25 + 4.75j], [3.25 + 5.75j]]
```
Args:
real: A `Tensor`. Must be one of the following types: `float32`,
`float64`.
imag: A `Tensor`. Must have the same type as `real`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `complex64` or `complex128`.
"""
real = ops.convert_to_tensor(real, name="real")
imag = ops.convert_to_tensor(imag, name="imag")
with ops.name_scope(name, "Complex", [real, imag]) as name:
input_types = (real.dtype, imag.dtype)
if input_types == (dtypes.float64, dtypes.float64):
Tout = dtypes.complex128
elif input_types == (dtypes.float32, dtypes.float32):
Tout = dtypes.complex64
else:
raise TypeError("real and imag have incorrect types: "
"{} {}".format(real.dtype.name, imag.dtype.name))
return gen_math_ops._complex(real, imag, Tout=Tout, name=name)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:41,代码来源:math_ops.py