当前位置: 首页>>代码示例>>Python>>正文


Python gen_image_ops.adjust_hue方法代码示例

本文整理汇总了Python中tensorflow.python.ops.gen_image_ops.adjust_hue方法的典型用法代码示例。如果您正苦于以下问题:Python gen_image_ops.adjust_hue方法的具体用法?Python gen_image_ops.adjust_hue怎么用?Python gen_image_ops.adjust_hue使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.gen_image_ops的用法示例。


在下文中一共展示了gen_image_ops.adjust_hue方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: random_hue

# 需要导入模块: from tensorflow.python.ops import gen_image_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_image_ops import adjust_hue [as 别名]
def random_hue(image, max_delta, seed=None):
  """Adjust the hue of an RGB image by a random factor.

  Equivalent to `adjust_hue()` but uses a `delta` randomly
  picked in the interval `[-max_delta, max_delta]`.

  `max_delta` must be in the interval `[0, 0.5]`.

  Args:
    image: RGB image or images. Size of the last dimension must be 3.
    max_delta: float.  Maximum value for the random delta.
    seed: An operation-specific seed. It will be used in conjunction
      with the graph-level seed to determine the real seeds that will be
      used in this operation. Please see the documentation of
      set_random_seed for its interaction with the graph-level random seed.

  Returns:
    3-D float tensor of shape `[height, width, channels]`.

  Raises:
    ValueError: if `max_delta` is invalid.
  """
  if max_delta > 0.5:
    raise ValueError('max_delta must be <= 0.5.')

  if max_delta < 0:
    raise ValueError('max_delta must be non-negative.')

  delta = random_ops.random_uniform([], -max_delta, max_delta, seed=seed)
  return adjust_hue(image, delta) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:32,代码来源:image_ops_impl.py

示例2: adjust_hue

# 需要导入模块: from tensorflow.python.ops import gen_image_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_image_ops import adjust_hue [as 别名]
def adjust_hue(image, delta, name=None):
  """Adjust hue of an RGB image.

  This is a convenience method that converts an RGB image to float
  representation, converts it to HSV, add an offset to the hue channel, converts
  back to RGB and then back to the original data type. If several adjustments
  are chained it is advisable to minimize the number of redundant conversions.

  `image` is an RGB image.  The image hue is adjusted by converting the
  image to HSV and rotating the hue channel (H) by
  `delta`.  The image is then converted back to RGB.

  `delta` must be in the interval `[-1, 1]`.

  Args:
    image: RGB image or images. Size of the last dimension must be 3.
    delta: float.  How much to add to the hue channel.
    name: A name for this operation (optional).

  Returns:
    Adjusted image(s), same shape and DType as `image`.
  """
  with ops.name_scope(name, 'adjust_hue', [image]) as name:
    image = ops.convert_to_tensor(image, name='image')
    # Remember original dtype to so we can convert back if needed
    orig_dtype = image.dtype
    flt_image = convert_image_dtype(image, dtypes.float32)

    # TODO(zhengxq): we will switch to the fused version after we add a GPU
    # kernel for that.
    fused = os.environ.get('TF_ADJUST_HUE_FUSED', '')
    fused = fused.lower() in ('true', 't', '1')

    if not fused:
      hsv = gen_image_ops.rgb_to_hsv(flt_image)

      hue = array_ops.slice(hsv, [0, 0, 0], [-1, -1, 1])
      saturation = array_ops.slice(hsv, [0, 0, 1], [-1, -1, 1])
      value = array_ops.slice(hsv, [0, 0, 2], [-1, -1, 1])

      # Note that we add 2*pi to guarantee that the resulting hue is a positive
      # floating point number since delta is [-0.5, 0.5].
      hue = math_ops.mod(hue + (delta + 1.), 1.)

      hsv_altered = array_ops.concat([hue, saturation, value], 2)
      rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
    else:
      rgb_altered = gen_image_ops.adjust_hue(flt_image, delta)

    return convert_image_dtype(rgb_altered, orig_dtype) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:52,代码来源:image_ops_impl.py

示例3: adjust_hue

# 需要导入模块: from tensorflow.python.ops import gen_image_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_image_ops import adjust_hue [as 别名]
def adjust_hue(image, delta, name=None):
  """Adjust hue of an RGB image.

  This is a convenience method that converts an RGB image to float
  representation, converts it to HSV, add an offset to the hue channel, converts
  back to RGB and then back to the original data type. If several adjustments
  are chained it is advisable to minimize the number of redundant conversions.

  `image` is an RGB image.  The image hue is adjusted by converting the
  image to HSV and rotating the hue channel (H) by
  `delta`.  The image is then converted back to RGB.

  `delta` must be in the interval `[-1, 1]`.

  Args:
    image: RGB image or images. Size of the last dimension must be 3.
    delta: float.  How much to add to the hue channel.
    name: A name for this operation (optional).

  Returns:
    Adjusted image(s), same shape and DType as `image`.
  """
  with ops.name_scope(name, 'adjust_hue', [image]) as name:
    image = ops.convert_to_tensor(image, name='image')
    # Remember original dtype to so we can convert back if needed
    orig_dtype = image.dtype
    flt_image = convert_image_dtype(image, dtypes.float32)

    # TODO(zhengxq): we will switch to the fused version after we add a GPU
    # kernel for that.
    fused = os.environ.get('TF_ADJUST_HUE_FUSED', '')
    fused = fused.lower() in ('true', 't', '1')

    if not fused:
      hsv = gen_image_ops.rgb_to_hsv(flt_image)

      hue = array_ops.slice(hsv, [0, 0, 0], [-1, -1, 1])
      saturation = array_ops.slice(hsv, [0, 0, 1], [-1, -1, 1])
      value = array_ops.slice(hsv, [0, 0, 2], [-1, -1, 1])

      # Note that we add 2*pi to guarantee that the resulting hue is a positive
      # floating point number since delta is [-0.5, 0.5].
      hue = math_ops.mod(hue + (delta + 1.), 1.)

      hsv_altered = array_ops.concat(2, [hue, saturation, value])
      rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
    else:
      rgb_altered = gen_image_ops.adjust_hue(flt_image, delta)

    return convert_image_dtype(rgb_altered, orig_dtype) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:52,代码来源:image_ops.py


注:本文中的tensorflow.python.ops.gen_image_ops.adjust_hue方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。