当前位置: 首页>>代码示例>>Python>>正文


Python gen_array_ops.fill方法代码示例

本文整理汇总了Python中tensorflow.python.ops.gen_array_ops.fill方法的典型用法代码示例。如果您正苦于以下问题:Python gen_array_ops.fill方法的具体用法?Python gen_array_ops.fill怎么用?Python gen_array_ops.fill使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.gen_array_ops的用法示例。


在下文中一共展示了gen_array_ops.fill方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: scheduled_sampling

# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 别名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
    with variable_scope.variable_scope("ScheduledEmbedding"):
      # Return -1s where we do not sample, and sample_ids elsewhere
      select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
      select_sample = select_sampler.sample(sample_shape=batch_size)
      sample_ids = array_ops.where(
                  select_sample,
                  tf.range(batch_size),
                  gen_array_ops.fill([batch_size], -1))
      where_sampling = math_ops.cast(
          array_ops.where(sample_ids > -1), tf.int32)
      where_not_sampling = math_ops.cast(
          array_ops.where(sample_ids <= -1), tf.int32)
      _estimate = array_ops.gather_nd(estimate, where_sampling)
      _true = array_ops.gather_nd(true, where_not_sampling)

      base_shape = array_ops.shape(true)
      result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
      result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
      result = result1 + result2
      return result1 + result2 
开发者ID:yaserkl,项目名称:TransferRL,代码行数:23,代码来源:run_summarization.py

示例2: sample

# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 别名]
def sample(self, time, outputs, state, name=None):
        """Gets a sample for one step."""
        with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
                            [time, outputs, state]):
            # Return -1s where we did not sample, and sample_ids elsewhere
            select_sampler = bernoulli.Bernoulli(
                probs=self._sampling_probability, dtype=dtypes.bool)
            select_sample = select_sampler.sample(
                sample_shape=self.batch_size, seed=self._scheduling_seed)
            sample_id_sampler = categorical.Categorical(logits=outputs)
            return array_ops.where(
                select_sample,
                sample_id_sampler.sample(seed=self._seed),
                gen_array_ops.fill([self.batch_size], -1)) 
开发者ID:qkaren,项目名称:Counterfactual-StoryRW,代码行数:16,代码来源:tf_helpers.py

示例3: sample

# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 别名]
def sample(self, time, outputs, state, name=None):
    with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
                        [time, outputs, state]):
      # Return -1s where we did not sample, and sample_ids elsewhere
      select_sampler = bernoulli.Bernoulli(
          probs=self._sampling_probability, dtype=dtypes.bool)
      select_sample = select_sampler.sample(
          sample_shape=self.batch_size, seed=self._scheduling_seed)
      sample_id_sampler = categorical.Categorical(logits=outputs)
      return array_ops.where(
          select_sample,
          sample_id_sampler.sample(seed=self._seed),
          gen_array_ops.fill([self.batch_size], -1)) 
开发者ID:NVIDIA,项目名称:OpenSeq2Seq,代码行数:15,代码来源:helper.py

示例4: sample

# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 别名]
def sample(self, time, outputs, state, name=None):
        """Gets a sample for one step."""
        with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperSample",
                            [time, outputs, state]):
            # Return -1s where we did not sample, and sample_ids elsewhere
            select_sampler = tfpd.Bernoulli(
                probs=self._sampling_probability, dtype=dtypes.bool)
            select_sample = select_sampler.sample(
                sample_shape=self.batch_size, seed=self._scheduling_seed)
            sample_id_sampler = tfpd.Categorical(logits=outputs)
            return array_ops.where(
                select_sample,
                sample_id_sampler.sample(seed=self._seed),
                gen_array_ops.fill([self.batch_size], -1)) 
开发者ID:asyml,项目名称:texar,代码行数:16,代码来源:tf_helpers.py

示例5: _create_slots

# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import fill [as 别名]
def _create_slots(self, var_list):
    for v in var_list:
      with ops.colocate_with(v):
        dtype = v.dtype.base_dtype
        if v.get_shape().is_fully_defined():
          init = init_ops.constant_initializer(self._initial_accumulator_value,
                                               dtype=dtype)
        else:
          # Use a Tensor instead of initializer if variable does not have static
          # shape.
          init_constant = gen_array_ops.fill(array_ops.shape(v),
                                             self._initial_accumulator_value)
          init = math_ops.cast(init_constant, dtype)
      self._get_or_make_slot_with_initializer(v, init, v.get_shape(), dtype,
                                              "accumulator", self._name) 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:17,代码来源:adagrad.py


注:本文中的tensorflow.python.ops.gen_array_ops.fill方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。