本文整理汇总了Python中tensorflow.python.ops.gen_array_ops._pack方法的典型用法代码示例。如果您正苦于以下问题:Python gen_array_ops._pack方法的具体用法?Python gen_array_ops._pack怎么用?Python gen_array_ops._pack使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_array_ops
的用法示例。
在下文中一共展示了gen_array_ops._pack方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: stack
# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import _pack [as 别名]
def stack(values, axis=0, name="stack"):
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
Packs the list of tensors in `values` into a tensor with rank one higher than
each tensor in `values`, by packing them along the `axis` dimension.
Given a list of length `N` of tensors of shape `(A, B, C)`;
if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`.
Etc.
For example:
```prettyprint
# 'x' is [1, 4]
# 'y' is [2, 5]
# 'z' is [3, 6]
stack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim.
stack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]
```
This is the opposite of unstack. The numpy equivalent is
```python
tf.stack([x, y, z]) = np.asarray([x, y, z])
```
Args:
values: A list of `Tensor` objects with the same shape and type.
axis: An `int`. The axis to stack along. Defaults to the first dimension.
Supports negative indexes.
name: A name for this operation (optional).
Returns:
output: A stacked `Tensor` with the same type as `values`.
Raises:
ValueError: If `axis` is out of the range [-(R+1), R+1).
"""
if axis == 0:
try:
# If the input is a constant list, it can be converted to a constant op
return ops.convert_to_tensor(values, name=name)
except (TypeError, ValueError):
pass # Input list contains non-constant tensors
value_shape = ops.convert_to_tensor(values[0], name=name).get_shape()
if value_shape.ndims is not None:
expanded_num_dims = value_shape.ndims + 1
if axis < -expanded_num_dims or axis >= expanded_num_dims:
raise ValueError("axis = %d not in [%d, %d)" %
(axis, -expanded_num_dims, expanded_num_dims))
return gen_array_ops._pack(values, axis=axis, name=name)
# pylint: disable=invalid-name
示例2: _autopacking_helper
# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import _pack [as 别名]
def _autopacking_helper(list_or_tuple, dtype, name):
"""Converts the given list or tuple to a tensor by packing.
Args:
list_or_tuple: A (possibly nested) list or tuple containing a tensor.
dtype: The element type of the returned tensor.
name: A name for the returned tensor.
Returns:
A `tf.Tensor` with value equivalent to `list_or_tuple`.
"""
must_pack = False
converted_elems = []
with ops.name_scope(name) as scope:
for i, elem in enumerate(list_or_tuple):
if ops.is_dense_tensor_like(elem):
if dtype is not None and elem.dtype.base_dtype != dtype:
raise TypeError(
"Cannot convert a list containing a tensor of dtype "
"%s to %s (Tensor is: %r)" % (elem.dtype, dtype, elem))
converted_elems.append(elem)
must_pack = True
elif isinstance(elem, (list, tuple)):
converted_elem = _autopacking_helper(elem, dtype, str(i))
if ops.is_dense_tensor_like(converted_elem):
must_pack = True
converted_elems.append(converted_elem)
else:
converted_elems.append(elem)
if must_pack:
elems_as_tensors = []
for i, elem in enumerate(converted_elems):
if ops.is_dense_tensor_like(elem):
elems_as_tensors.append(elem)
else:
# NOTE(mrry): This is inefficient, but it enables us to
# handle the case where the list arguments are other
# convertible-to-tensor types, such as numpy arrays.
elems_as_tensors.append(
constant_op.constant(elem, dtype=dtype, name=str(i)))
return gen_array_ops._pack(elems_as_tensors, name=scope)
else:
return converted_elems
示例3: stack
# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import _pack [as 别名]
def stack(values, axis=0, name="stack"):
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
Packs the list of tensors in `values` into a tensor with rank one higher than
each tensor in `values`, by packing them along the `axis` dimension.
Given a list of length `N` of tensors of shape `(A, B, C)`;
if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`.
Etc.
For example:
```prettyprint
# 'x' is [1, 4]
# 'y' is [2, 5]
# 'z' is [3, 6]
stack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim.
stack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]
```
This is the opposite of unstack. The numpy equivalent is
tf.stack([x, y, z]) = np.asarray([x, y, z])
Args:
values: A list of `Tensor` objects with the same shape and type.
axis: An `int`. The axis to stack along. Defaults to the first dimension.
Supports negative indexes.
name: A name for this operation (optional).
Returns:
output: A stacked `Tensor` with the same type as `values`.
Raises:
ValueError: If `axis` is out of the range [-(R+1), R+1).
"""
if axis == 0:
try:
# If the input is a constant list, it can be converted to a constant op
return ops.convert_to_tensor(values, name=name)
except (TypeError, ValueError):
pass # Input list contains non-constant tensors
value_shape = ops.convert_to_tensor(values[0], name=name).get_shape()
if value_shape.ndims is not None:
expanded_num_dims = value_shape.ndims + 1
if axis < -expanded_num_dims or axis >= expanded_num_dims:
raise ValueError("axis = %d not in [%d, %d)" %
(axis, -expanded_num_dims, expanded_num_dims))
return gen_array_ops._pack(values, axis=axis, name=name)
# pylint: disable=invalid-name
示例4: stack
# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import _pack [as 别名]
def stack(values, axis=0, name="stack"):
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
Packs the list of tensors in `values` into a tensor with rank one higher than
each tensor in `values`, by packing them along the `axis` dimension.
Given a list of length `N` of tensors of shape `(A, B, C)`;
if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`.
Etc.
For example:
```prettyprint
# 'x' is [1, 4]
# 'y' is [2, 5]
# 'z' is [3, 6]
stack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim.
stack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]
```
This is the opposite of unstack. The numpy equivalent is
tf.stack([x, y, z]) = np.asarray([x, y, z])
Args:
values: A list of `Tensor` objects with the same shape and type.
axis: An `int`. The axis to stack along. Defaults to the first dimension.
Supports negative indexes.
name: A name for this operation (optional).
Returns:
output: A stacked `Tensor` with the same type as `values`.
Raises:
ValueError: If `axis` is out of the range [-(R+1), R+1).
"""
if axis == 0:
try:
# If the input is a constant list, it can be converted to a constant op
return ops.convert_to_tensor(values, name=name)
except (TypeError, ValueError):
pass # Input list contains non-constant tensors
value_shape = ops.convert_to_tensor(values[0], name=name).get_shape()
if value_shape.ndims is not None:
expanded_num_dims = value_shape.ndims + 1
if axis < -expanded_num_dims or axis >= expanded_num_dims:
raise ValueError("axis = %d not in [%d, %d)" %
(axis, -expanded_num_dims, expanded_num_dims))
return gen_array_ops._pack(values, axis=axis, name=name)
示例5: stack
# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import _pack [as 别名]
def stack(values, axis=0, name="stack"):
"""Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
Packs the list of tensors in `values` into a tensor with rank one higher than
each tensor in `values`, by packing them along the `axis` dimension.
Given a list of length `N` of tensors of shape `(A, B, C)`;
if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`.
Etc.
For example:
```python
x = tf.constant([1, 4])
y = tf.constant([2, 5])
z = tf.constant([3, 6])
tf.stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]] (Pack along first dim.)
tf.stack([x, y, z], axis=1) # [[1, 2, 3], [4, 5, 6]]
```
This is the opposite of unstack. The numpy equivalent is
```python
tf.stack([x, y, z]) = np.stack([x, y, z])
```
Args:
values: A list of `Tensor` objects with the same shape and type.
axis: An `int`. The axis to stack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is `[-(R+1), R+1)`.
name: A name for this operation (optional).
Returns:
output: A stacked `Tensor` with the same type as `values`.
Raises:
ValueError: If `axis` is out of the range [-(R+1), R+1).
"""
if axis == 0:
try:
# If the input is a constant list, it can be converted to a constant op
return ops.convert_to_tensor(values, name=name)
except (TypeError, ValueError):
pass # Input list contains non-constant tensors
value_shape = ops.convert_to_tensor(values[0], name=name).get_shape()
if value_shape.ndims is not None:
expanded_num_dims = value_shape.ndims + 1
if axis < -expanded_num_dims or axis >= expanded_num_dims:
raise ValueError("axis = %d not in [%d, %d)" % (axis, -expanded_num_dims,
expanded_num_dims))
return gen_array_ops._pack(values, axis=axis, name=name)
# pylint: disable=invalid-name
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:59,代码来源:array_ops.py
示例6: _autopacking_helper
# 需要导入模块: from tensorflow.python.ops import gen_array_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_array_ops import _pack [as 别名]
def _autopacking_helper(list_or_tuple, dtype, name):
"""Converts the given list or tuple to a tensor by packing.
Args:
list_or_tuple: A (possibly nested) list or tuple containing a tensor.
dtype: The element type of the returned tensor.
name: A name for the returned tensor.
Returns:
A `tf.Tensor` with value equivalent to `list_or_tuple`.
"""
must_pack = False
converted_elems = []
with ops.name_scope(name) as scope:
for i, elem in enumerate(list_or_tuple):
if ops.is_dense_tensor_like(elem):
if dtype is not None and elem.dtype.base_dtype != dtype:
raise TypeError("Cannot convert a list containing a tensor of dtype "
"%s to %s (Tensor is: %r)" % (elem.dtype, dtype,
elem))
converted_elems.append(elem)
must_pack = True
elif isinstance(elem, (list, tuple)):
converted_elem = _autopacking_helper(elem, dtype, str(i))
if ops.is_dense_tensor_like(converted_elem):
must_pack = True
converted_elems.append(converted_elem)
else:
converted_elems.append(elem)
if must_pack:
elems_as_tensors = []
for i, elem in enumerate(converted_elems):
if ops.is_dense_tensor_like(elem):
elems_as_tensors.append(elem)
else:
# NOTE(mrry): This is inefficient, but it enables us to
# handle the case where the list arguments are other
# convertible-to-tensor types, such as numpy arrays.
elems_as_tensors.append(
constant_op.constant(elem, dtype=dtype, name=str(i)))
return gen_array_ops._pack(elems_as_tensors, name=scope)
else:
return converted_elems
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:45,代码来源:array_ops.py