当前位置: 首页>>代码示例>>Python>>正文


Python functional_ops._symbolic_gradient方法代码示例

本文整理汇总了Python中tensorflow.python.ops.functional_ops._symbolic_gradient方法的典型用法代码示例。如果您正苦于以下问题:Python functional_ops._symbolic_gradient方法的具体用法?Python functional_ops._symbolic_gradient怎么用?Python functional_ops._symbolic_gradient使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.functional_ops的用法示例。


在下文中一共展示了functional_ops._symbolic_gradient方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testGradientFunc

# 需要导入模块: from tensorflow.python.ops import functional_ops [as 别名]
# 或者: from tensorflow.python.ops.functional_ops import _symbolic_gradient [as 别名]
def testGradientFunc(self):

    @function.Defun(tf.float32, func_name="XSquarePlusOneFn")
    def XSquarePlusOne(x):
      return x * x + 1.0

    @function.Defun(tf.float32, tf.float32)
    def XSquarePlusOneGrad(x, dy):
      dx = functional_ops._symbolic_gradient(
          input=[x, dy], Tout=[tf.float32], f="XSquarePlusOneFn", name="dx")
      return dx

    g = tf.Graph()
    with g.as_default():
      call_f = XSquarePlusOne([2.0])
      call_g = XSquarePlusOneGrad([2.0], [0.1])

      with tf.Session() as sess:
        self.assertAllClose([5.0], sess.run(call_f))
        self.assertAllClose([0.4], sess.run(call_g)) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:22,代码来源:function_test.py

示例2: _SymGrad

# 需要导入模块: from tensorflow.python.ops import functional_ops [as 别名]
# 或者: from tensorflow.python.ops.functional_ops import _symbolic_gradient [as 别名]
def _SymGrad(op, out_grads):
  """Backprop through a function call node op given its outputs' gradients."""
  f_in = [x for x in op.inputs] + out_grads
  f_types = [x.dtype for x in op.inputs]
  f = attr_value_pb2.NameAttrList()
  f.name = op.type
  for k in op.node_def.attr:
    f.attr[k].CopyFrom(op.node_def.attr[k])
  # pylint: disable=protected-access
  in_grads = functional_ops._symbolic_gradient(input=f_in, Tout=f_types, f=f)
  # pylint: enable=protected-access
  return in_grads 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:14,代码来源:gradients_impl.py

示例3: testSymGradShape

# 需要导入模块: from tensorflow.python.ops import functional_ops [as 别名]
# 或者: from tensorflow.python.ops.functional_ops import _symbolic_gradient [as 别名]
def testSymGradShape(self):
    g = tf.Graph()
    with g.as_default():
      x = tf.placeholder(tf.float32, [25, 4])
      y = tf.placeholder(tf.float32, [200, 100])
      dz = tf.placeholder(tf.float32, [1])
      # We assume Foo is a function of (x, y) -> (z) Then, Foo's
      # gradient function is (x, y, dz) -> (dx, dy).  dx's shape
      # should be the same as x's; and dy's shape should be the same
      # as y's.
      dx, dy = functional_ops._symbolic_gradient(
          input=[x, y, dz], Tout=[tf.float32] * 2, f="Foo")
      self.assertEqual(x.get_shape(), dx.get_shape())
      self.assertEqual(y.get_shape(), dy.get_shape()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:16,代码来源:function_test.py


注:本文中的tensorflow.python.ops.functional_ops._symbolic_gradient方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。