本文整理汇总了Python中tensorflow.python.ops.check_ops.assert_positive方法的典型用法代码示例。如果您正苦于以下问题:Python check_ops.assert_positive方法的具体用法?Python check_ops.assert_positive怎么用?Python check_ops.assert_positive使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.check_ops
的用法示例。
在下文中一共展示了check_ops.assert_positive方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _check_chol
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _check_chol(self, chol):
"""Verify that `chol` is proper."""
chol = ops.convert_to_tensor(chol, name="chol")
if not self.verify_pd:
return chol
shape = array_ops.shape(chol)
rank = array_ops.rank(chol)
is_matrix = check_ops.assert_rank_at_least(chol, 2)
is_square = check_ops.assert_equal(
array_ops.gather(shape, rank - 2), array_ops.gather(shape, rank - 1))
deps = [is_matrix, is_square]
diag = array_ops.matrix_diag_part(chol)
deps.append(check_ops.assert_positive(diag))
return control_flow_ops.with_dependencies(deps, chol)
示例2: _Check3DImage
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _Check3DImage(image, require_static=True):
"""Assert that we are working with properly shaped image.
Args:
image: 3-D Tensor of shape [height, width, channels]
require_static: If `True`, requires that all dimensions of `image` are
known and non-zero.
Raises:
ValueError: if `image.shape` is not a 3-vector.
Returns:
An empty list, if `image` has fully defined dimensions. Otherwise, a list
containing an assert op is returned.
"""
try:
image_shape = image.get_shape().with_rank(3)
except ValueError:
raise ValueError("'image' must be three-dimensional.")
if require_static and not image_shape.is_fully_defined():
raise ValueError("'image' must be fully defined.")
if any(x == 0 for x in image_shape):
raise ValueError("all dims of 'image.shape' must be > 0: %s" %
image_shape)
if not image_shape.is_fully_defined():
return [check_ops.assert_positive(array_ops.shape(image),
["all dims of 'image.shape' "
"must be > 0."])]
else:
return []
示例3: _Check3DImage
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _Check3DImage(image, require_static=True):
"""Assert that we are working with properly shaped image.
Args:
image: 3-D Tensor of shape [height, width, channels]
require_static: If `True`, requires that all dimensions of `image` are
known and non-zero.
Raises:
ValueError: if `image.shape` is not a 3-vector.
Returns:
An empty list, if `image` has fully defined dimensions. Otherwise, a list
containing an assert op is returned.
"""
try:
image_shape = image.get_shape().with_rank(3)
except ValueError:
raise ValueError("'image' (shape %s) must be three-dimensional." %
image.shape)
if require_static and not image_shape.is_fully_defined():
raise ValueError("'image' (shape %s) must be fully defined." %
image_shape)
if any(x == 0 for x in image_shape):
raise ValueError("all dims of 'image.shape' must be > 0: %s" %
image_shape)
if not image_shape.is_fully_defined():
return [check_ops.assert_positive(array_ops.shape(image),
["all dims of 'image.shape' "
"must be > 0."])]
else:
return []
示例4: _CheckAtLeast3DImage
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _CheckAtLeast3DImage(image, require_static=True):
"""Assert that we are working with properly shaped image.
Args:
image: >= 3-D Tensor of size [*, height, width, depth]
require_static: If `True`, requires that all dimensions of `image` are
known and non-zero.
Raises:
ValueError: if image.shape is not a [>= 3] vector.
Returns:
An empty list, if `image` has fully defined dimensions. Otherwise, a list
containing an assert op is returned.
"""
try:
if image.get_shape().ndims is None:
image_shape = image.get_shape().with_rank(3)
else:
image_shape = image.get_shape().with_rank_at_least(3)
except ValueError:
raise ValueError("'image' must be at least three-dimensional.")
if require_static and not image_shape.is_fully_defined():
raise ValueError('\'image\' must be fully defined.')
if any(x == 0 for x in image_shape):
raise ValueError('all dims of \'image.shape\' must be > 0: %s' %
image_shape)
if not image_shape.is_fully_defined():
return [check_ops.assert_positive(array_ops.shape(image),
["all dims of 'image.shape' "
"must be > 0."])]
else:
return []
示例5: _maybe_assert_valid_sample
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_assert_valid_sample(self, x):
check_ops.assert_same_float_dtype(tensors=[x], dtype=self.dtype)
if not self.validate_args:
return x
return control_flow_ops.with_dependencies([
check_ops.assert_positive(x),
], x)
示例6: _maybe_assert_valid_concentration
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_assert_valid_concentration(self, concentration, validate_args):
"""Checks the validity of the concentration parameter."""
if not validate_args:
return concentration
return control_flow_ops.with_dependencies([
check_ops.assert_positive(
concentration,
message="Concentration parameter must be positive."),
check_ops.assert_rank_at_least(
concentration, 1,
message="Concentration parameter must have >=1 dimensions."),
check_ops.assert_less(
1, array_ops.shape(concentration)[-1],
message="Concentration parameter must have event_size >= 2."),
], concentration)
示例7: _maybe_assert_valid_sample
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_assert_valid_sample(self, x):
"""Checks the validity of a sample."""
if not self.validate_args:
return x
return control_flow_ops.with_dependencies([
check_ops.assert_positive(
x,
message="sample must be positive"),
check_ops.assert_less(
x, array_ops.ones([], self.dtype),
message="sample must be no larger than `1`."),
], x)
示例8: _maybe_assert_valid_sample
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_assert_valid_sample(self, x):
"""Checks the validity of a sample."""
if not self.validate_args:
return x
return control_flow_ops.with_dependencies([
check_ops.assert_positive(
x,
message="samples must be positive"),
distribution_util.assert_close(
array_ops.ones([], dtype=self.dtype),
math_ops.reduce_sum(x, -1),
message="sample last-dimension must sum to `1`"),
], x)
示例9: _maybe_mask_score
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
if memory_sequence_length is None:
return score
message = ("All values in memory_sequence_length must greater than zero.")
with ops.control_dependencies(
[check_ops.assert_positive(memory_sequence_length, message=message)]):
score_mask = array_ops.sequence_mask(
memory_sequence_length, maxlen=array_ops.shape(score)[1])
score_mask_values = score_mask_value * array_ops.ones_like(score)
return array_ops.where(score_mask, score, score_mask_values)
示例10: _check_scale
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _check_scale(self, scale, dtype):
"""Check that the init arg `scale` defines a valid operator."""
if scale is None:
return constant_op.constant(1.0, dtype=dtype)
scale = ops.convert_to_tensor(scale, dtype=dtype, name="scale")
if not self._verify_pd:
return scale
# Further check that this is a rank 0, positive tensor.
scale = check_ops.assert_scalar(scale)
return control_flow_ops.with_dependencies(
[check_ops.assert_positive(scale)], scale)
示例11: _maybe_assert_valid_sample
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_assert_valid_sample(self, x):
check_ops.assert_same_float_dtype(
tensors=[x], dtype=self.dtype)
if not self.validate_args:
return x
return control_flow_ops.with_dependencies([
check_ops.assert_positive(x),
], x)
示例12: __init__
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def __init__(self,
rate,
validate_args=False,
allow_nan_stats=True,
name="Poisson"):
"""Initialize a batch of Poisson distributions.
Args:
rate: Floating point tensor, the rate parameter of the
distribution(s). `rate` must be positive.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
"""
parameters = locals()
with ops.name_scope(name, values=[rate]):
with ops.control_dependencies([check_ops.assert_positive(rate)] if
validate_args else []):
self._rate = array_ops.identity(rate, name="rate")
super(Poisson, self).__init__(
dtype=self._rate.dtype,
reparameterization_type=distribution.NOT_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
graph_parents=[self._rate],
name=name)
示例13: _check_diag
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _check_diag(self, diag):
"""Verify that `diag` is positive."""
diag = ops.convert_to_tensor(diag, name="diag")
if not self.verify_pd:
return diag
deps = [check_ops.assert_positive(diag)]
return control_flow_ops.with_dependencies(deps, diag)
示例14: _maybe_validate_identity_multiplier
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_validate_identity_multiplier(self, identity_multiplier,
validate_args):
"""Check that the init arg `identity_multiplier` is valid."""
if identity_multiplier is None or not validate_args:
return identity_multiplier
if validate_args:
identity_multiplier = control_flow_ops.with_dependencies(
[check_ops.assert_positive(identity_multiplier)],
identity_multiplier)
return identity_multiplier
示例15: _maybe_assert_valid_y
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_positive [as 别名]
def _maybe_assert_valid_y(self, y):
if not self.validate_args:
return y
is_valid = check_ops.assert_positive(
y, message="Inverse transformation input must be greater than 0.")
return control_flow_ops.with_dependencies([is_valid], y)