当前位置: 首页>>代码示例>>Python>>正文


Python check_ops.assert_less_equal方法代码示例

本文整理汇总了Python中tensorflow.python.ops.check_ops.assert_less_equal方法的典型用法代码示例。如果您正苦于以下问题:Python check_ops.assert_less_equal方法的具体用法?Python check_ops.assert_less_equal怎么用?Python check_ops.assert_less_equal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.check_ops的用法示例。


在下文中一共展示了check_ops.assert_less_equal方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _init_clusters_random

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less_equal [as 别名]
def _init_clusters_random(self):
    """Does random initialization of clusters.

    Returns:
      Tensor of randomly initialized clusters.
    """
    num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in self._inputs])
    # Note that for mini-batch k-means, we should ensure that the batch size of
    # data used during initialization is sufficiently large to avoid duplicated
    # clusters.
    with ops.control_dependencies(
        [check_ops.assert_less_equal(self._num_clusters, num_data)]):
      indices = random_ops.random_uniform(
          array_ops.reshape(self._num_clusters, [-1]),
          minval=0,
          maxval=math_ops.cast(num_data, dtypes.int64),
          seed=self._random_seed,
          dtype=dtypes.int64)
      clusters_init = embedding_lookup(
          self._inputs, indices, partition_strategy='div')
      return clusters_init 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:clustering_ops.py

示例2: _init_clusters_random

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less_equal [as 别名]
def _init_clusters_random(data, num_clusters, random_seed):
  """Does random initialization of clusters.

  Args:
    data: a list of Tensors with a matrix of data, each row is an example.
    num_clusters: an integer with the number of clusters.
    random_seed: Seed for PRNG used to initialize seeds.

  Returns:
    A Tensor with num_clusters random rows of data.
  """
  assert isinstance(data, list)
  num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in data])
  with ops.control_dependencies(
      [check_ops.assert_less_equal(num_clusters, num_data)]):
    indices = random_ops.random_uniform(
        [num_clusters],
        minval=0,
        maxval=math_ops.cast(num_data, dtypes.int64),
        seed=random_seed,
        dtype=dtypes.int64)
  indices %= math_ops.cast(num_data, dtypes.int64)
  clusters_init = embedding_lookup(data, indices, partition_strategy='div')
  return clusters_init 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:26,代码来源:gmm_ops.py

示例3: _check_shape

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less_equal [as 别名]
def _check_shape(self, shape):
    """Check that the init arg `shape` defines a valid operator."""
    shape = ops.convert_to_tensor(shape, name="shape")
    if not self._verify_pd:
      return shape

    # Further checks are equivalent to verification that this is positive
    # definite.  Why?  Because the further checks simply check that this is a
    # square matrix, and combining the fact that this is square (and thus maps
    # a vector space R^k onto itself), with the behavior of .matmul(), this must
    # be the identity operator.
    rank = array_ops.size(shape)
    assert_matrix = check_ops.assert_less_equal(2, rank)
    with ops.control_dependencies([assert_matrix]):
      last_dim = array_ops.gather(shape, rank - 1)
      second_to_last_dim = array_ops.gather(shape, rank - 2)
      assert_square = check_ops.assert_equal(last_dim, second_to_last_dim)
      return control_flow_ops.with_dependencies([assert_matrix, assert_square],
                                                shape) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:21,代码来源:operator_pd_identity.py

示例4: _init_clusters_random

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less_equal [as 别名]
def _init_clusters_random(data, num_clusters, random_seed):
  """Does random initialization of clusters.

  Args:
    data: a list of Tensors with a matrix of data, each row is an example.
    num_clusters: an integer with the number of clusters.
    random_seed: Seed for PRNG used to initialize seeds.

  Returns:
    A Tensor with num_clusters random rows of data.
  """
  assert isinstance(data, list)
  num_data = math_ops.add_n([array_ops.shape(inp)[0] for inp in data])
  with ops.control_dependencies(
      [check_ops.assert_less_equal(num_clusters, num_data)]):
    indices = random_ops.random_uniform(
        [num_clusters],
        minval=0,
        maxval=math_ops.cast(num_data, dtypes.int64),
        seed=random_seed,
        dtype=dtypes.int64)
  indices = math_ops.cast(indices, dtypes.int32) % num_data
  clusters_init = embedding_lookup(data, indices, partition_strategy='div')
  return clusters_init 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:26,代码来源:gmm_ops.py

示例5: _maybe_assert_valid_sample

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less_equal [as 别名]
def _maybe_assert_valid_sample(self, event, check_integer=True):
    if not self.validate_args:
      return event
    event = distribution_util.embed_check_nonnegative_discrete(
        event, check_integer=check_integer)
    return control_flow_ops.with_dependencies([
        check_ops.assert_less_equal(
            event, array_ops.ones_like(event),
            message="event is not less than or equal to 1."),
    ], event) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:12,代码来源:bernoulli.py

示例6: _check_counts

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less_equal [as 别名]
def _check_counts(self, counts):
    counts = ops.convert_to_tensor(counts, name="counts_before_deps")
    if not self.validate_args:
      return counts
    return control_flow_ops.with_dependencies([
        check_ops.assert_non_negative(
            counts, message="counts has negative components."),
        check_ops.assert_less_equal(
            counts, self._n, message="counts are not less than or equal to n."),
        distribution_util.assert_integer_form(
            counts, message="counts have non-integer components.")], counts) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:13,代码来源:binomial.py

示例7: get_logits_and_probs

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less_equal [as 别名]
def get_logits_and_probs(logits=None,
                         probs=None,
                         multidimensional=False,
                         validate_args=False,
                         name="get_logits_and_probs"):
  """Converts logit to probabilities (or vice-versa), and returns both.

  Args:
    logits: Floating-point `Tensor` representing log-odds.
    probs: Floating-point `Tensor` representing probabilities.
    multidimensional: Python `bool`, default `False`.
      If `True`, represents whether the last dimension of `logits` or `probs`,
      a `[N1, N2, ...  k]` dimensional tensor, representing the
      logit or probability of `shape[-1]` classes.
    validate_args: Python `bool`, default `False`. When `True`, either assert
      `0 <= probs <= 1` (if not `multidimensional`) or that the last dimension
      of `probs` sums to one.
    name: A name for this operation (optional).

  Returns:
    logits, probs: Tuple of `Tensor`s. If `probs` has an entry that is `0` or
      `1`, then the corresponding entry in the returned logit will be `-Inf` and
      `Inf` respectively.

  Raises:
    ValueError: if neither `probs` nor `logits` were passed in, or both were.
  """
  with ops.name_scope(name, values=[probs, logits]):
    if (probs is None) == (logits is None):
      raise ValueError("Must pass probs or logits, but not both.")

    if probs is None:
      logits = ops.convert_to_tensor(logits, name="logits")
      if multidimensional:
        return logits, nn.softmax(logits, name="probs")
      return logits, math_ops.sigmoid(logits, name="probs")

    probs = ops.convert_to_tensor(probs, name="probs")
    if validate_args:
      with ops.name_scope("validate_probs"):
        one = constant_op.constant(1., probs.dtype)
        dependencies = [check_ops.assert_non_negative(probs)]
        if multidimensional:
          dependencies += [assert_close(math_ops.reduce_sum(probs, -1), one,
                                        message="probs does not sum to 1.")]
        else:
          dependencies += [check_ops.assert_less_equal(
              probs, one, message="probs has components greater than 1.")]
        probs = control_flow_ops.with_dependencies(dependencies, probs)

    with ops.name_scope("logits"):
      if multidimensional:
        # Here we don't compute the multidimensional case, in a manner
        # consistent with respect to the unidimensional case. We do so
        # following the TF convention. Typically, you might expect to see
        # logits = log(probs) - log(probs[pivot]). A side-effect of
        # being consistent with the TF approach is that the unidimensional case
        # implicitly handles the second dimension but the multidimensional case
        # explicitly keeps the pivot dimension.
        return math_ops.log(probs), probs
      return math_ops.log(probs) - math_ops.log1p(-1. * probs), probs 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:63,代码来源:util.py


注:本文中的tensorflow.python.ops.check_ops.assert_less_equal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。