本文整理汇总了Python中tensorflow.python.ops.check_ops.assert_less方法的典型用法代码示例。如果您正苦于以下问题:Python check_ops.assert_less方法的具体用法?Python check_ops.assert_less怎么用?Python check_ops.assert_less使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.check_ops
的用法示例。
在下文中一共展示了check_ops.assert_less方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _mode
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mode(self):
mode = (self.concentration1 - 1.) / (self.total_concentration - 2.)
if self.allow_nan_stats:
nan = array_ops.fill(
self.batch_shape_tensor(),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
is_defined = math_ops.logical_and(self.concentration1 > 1.,
self.concentration0 > 1.)
return array_ops.where(is_defined, mode, nan)
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.concentration1,
message="Mode undefined for concentration1 <= 1."),
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.concentration0,
message="Mode undefined for concentration0 <= 1.")
], mode)
示例2: _mean
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mean(self):
mean = self.loc * array_ops.ones(self.batch_shape_tensor(),
dtype=self.dtype)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
math_ops.greater(
self.df,
array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
mean,
array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies(
[
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.df,
message="mean not defined for components of df <= 1"),
],
mean)
示例3: _mode
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mode(self):
k = math_ops.cast(self.event_shape_tensor()[0], self.dtype)
mode = (self.concentration - 1.) / (
self.total_concentration[..., array_ops.newaxis] - k)
if self.allow_nan_stats:
nan = array_ops.fill(
array_ops.shape(mode),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
return array_ops.where(
math_ops.reduce_all(self.concentration > 1., axis=-1),
mode, nan)
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones([], self.dtype),
self.concentration,
message="Mode undefined when any concentration <= 1"),
], mode)
示例4: _variance
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _variance(self):
var = (math_ops.square(self.rate)
/ math_ops.square(self.concentration - 1.)
/ (self.concentration - 2.))
if self.allow_nan_stats:
nan = array_ops.fill(
self.batch_shape_tensor(),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
return array_ops.where(self.concentration > 2., var, nan)
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
constant_op.constant(2., dtype=self.dtype),
self.concentration,
message="variance undefined when any concentration <= 2"),
], var)
示例5: _assert_non_singular
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _assert_non_singular(self):
"""Private default implementation of _assert_non_singular."""
logging.warn(
"Using (possibly slow) default implementation of assert_non_singular."
" Requires conversion to a dense matrix and O(N^3) operations.")
if self._can_use_cholesky():
return self.assert_positive_definite()
else:
singular_values = linalg_ops.svd(
self._get_cached_dense_matrix(), compute_uv=False)
# TODO(langmore) Add .eig and .cond as methods.
cond = (math_ops.reduce_max(singular_values, axis=-1) /
math_ops.reduce_min(singular_values, axis=-1))
return check_ops.assert_less(
cond,
self._max_condition_number_to_be_non_singular(),
message="Singular matrix up to precision epsilon.")
raise NotImplementedError("assert_non_singular is not implemented.")
示例6: assert_no_entries_with_modulus_zero
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def assert_no_entries_with_modulus_zero(
x, message=None, name="assert_no_entries_with_modulus_zero"):
"""Returns `Op` that asserts Tensor `x` has no entries with modulus zero.
Args:
x: Numeric `Tensor`, real, integer, or complex.
message: A string message to prepend to failure message.
name: A name to give this `Op`.
Returns:
An `Op` that asserts `x` has no entries with modulus zero.
"""
with ops.name_scope(name, values=[x]):
x = ops.convert_to_tensor(x, name="x")
dtype = x.dtype.base_dtype
should_be_nonzero = math_ops.abs(x)
zero = ops.convert_to_tensor(0, dtype=dtype.real_dtype)
return check_ops.assert_less(zero, should_be_nonzero, message=message)
示例7: _mode
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mode(self):
mode = (self.a - 1.)/ (self.a_b_sum - 2.)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
math_ops.logical_and(
math_ops.greater(self.a, 1.),
math_ops.greater(self.b, 1.)),
mode,
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.a,
message="Mode not defined for components of a <= 1."),
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.b,
message="Mode not defined for components of b <= 1."),
], mode)
示例8: _mean
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mean(self):
mean = self.mu * array_ops.ones(self.batch_shape(), dtype=self.dtype)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
math_ops.greater(
self.df,
array_ops.ones(self.batch_shape(), dtype=self.dtype)),
mean,
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies(
[
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype),
self.df,
message="mean not defined for components of df <= 1"),
],
mean)
示例9: _mode
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mode(self):
mode = ((self.alpha - 1.) /
(array_ops.expand_dims(self.alpha_sum, dim=-1) -
math_ops.cast(self.event_shape()[0], self.dtype)))
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
shape = array_ops.concat((self.batch_shape(), self.event_shape()), 0)
return array_ops.where(
math_ops.greater(self.alpha, 1.),
mode,
array_ops.fill(shape, nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.alpha,
message="mode not defined for components of alpha <= 1")
], mode)
示例10: _mode
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mode(self):
mode = (self.a - 1.)/ (self.a_b_sum - 2.)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return math_ops.select(
math_ops.logical_and(
math_ops.greater(self.a, 1.),
math_ops.greater(self.b, 1.)),
mode,
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.a,
message="Mode not defined for components of a <= 1."),
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.b,
message="Mode not defined for components of b <= 1."),
], mode)
示例11: _variance
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _variance(self):
var = (self._ones() *
math_ops.square(self.sigma) * self.df / (self.df - 2))
# When 1 < df <= 2, variance is infinite.
inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
result_where_defined = math_ops.select(
math_ops.greater(self.df, array_ops.fill(self.batch_shape(), 2.)),
var,
array_ops.fill(self.batch_shape(), inf, name="inf"))
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return math_ops.select(
math_ops.greater(self.df, self._ones()),
result_where_defined,
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.df,
message="variance not defined for components of df <= 1"),
], result_where_defined)
示例12: _mode
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mode(self):
mode = ((self.alpha - 1.) /
(array_ops.expand_dims(self.alpha_sum, dim=-1) -
math_ops.cast(self.event_shape()[0], self.dtype)))
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
shape = array_ops.concat(0, (self.batch_shape(), self.event_shape()))
return math_ops.select(
math_ops.greater(self.alpha, 1.),
mode,
array_ops.fill(shape, nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.alpha,
message="mode not defined for components of alpha <= 1")
], mode)
示例13: _mode
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _mode(self):
mode = (self.concentration - 1.) / self.rate
if self.allow_nan_stats:
nan = array_ops.fill(
self.batch_shape_tensor(),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
return array_ops.where(self.concentration > 1., mode, nan)
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones([], self.dtype),
self.concentration,
message="mode not defined when any concentration <= 1"),
], mode)
示例14: _maybe_assert_valid_concentration
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _maybe_assert_valid_concentration(self, concentration, validate_args):
"""Checks the validity of the concentration parameter."""
if not validate_args:
return concentration
return control_flow_ops.with_dependencies([
check_ops.assert_positive(
concentration,
message="Concentration parameter must be positive."),
check_ops.assert_rank_at_least(
concentration, 1,
message="Concentration parameter must have >=1 dimensions."),
check_ops.assert_less(
1, array_ops.shape(concentration)[-1],
message="Concentration parameter must have event_size >= 2."),
], concentration)
示例15: _maybe_assert_valid_sample
# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_less [as 别名]
def _maybe_assert_valid_sample(self, x):
"""Checks the validity of a sample."""
if not self.validate_args:
return x
return control_flow_ops.with_dependencies([
check_ops.assert_positive(
x,
message="sample must be positive"),
check_ops.assert_less(
x, array_ops.ones([], self.dtype),
message="sample must be no larger than `1`."),
], x)