当前位置: 首页>>代码示例>>Python>>正文


Python check_ops.assert_integer方法代码示例

本文整理汇总了Python中tensorflow.python.ops.check_ops.assert_integer方法的典型用法代码示例。如果您正苦于以下问题:Python check_ops.assert_integer方法的具体用法?Python check_ops.assert_integer怎么用?Python check_ops.assert_integer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.check_ops的用法示例。


在下文中一共展示了check_ops.assert_integer方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_integer [as 别名]
def __init__(self, dim, dtype=dtypes.float32, validate_args=False, allow_nan_stats=True,
                 name="HypersphericalUniform"):
        """Initialize a batch of Hyperspherical Uniform distributions.

        Args:
          dim: Integer tensor, dimensionality of the distribution(s). Must
            be `dim > 0`.
          validate_args: Python `bool`, default `False`. When `True` distribution
            parameters are checked for validity despite possibly degrading runtime
            performance. When `False` invalid inputs may silently render incorrect
            outputs.
          allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
            (e.g., mean, mode, variance) use the value "`NaN`" to indicate the
            result is undefined. When `False`, an exception is raised if one or
            more of the statistic's batch members are undefined.
          name: Python `str` name prefixed to Ops created by this class.

        Raises:
          InvalidArgumentError: if `dim > 0` and `validate_args=False`.
        """
        parameters = locals()
        with ops.name_scope(name, values=[dim]):
            with ops.control_dependencies([check_ops.assert_positive(dim),
                                           check_ops.assert_integer(dim),
                                           check_ops.assert_scalar(dim)] if validate_args else []):
                self._dim = dim

            super(HypersphericalUniform, self).__init__(
                dtype=dtype,
                reparameterization_type=distribution.FULLY_REPARAMETERIZED,
                validate_args=validate_args,
                allow_nan_stats=allow_nan_stats,
                parameters=parameters,
                graph_parents=[],
                name=name) 
开发者ID:nicola-decao,项目名称:s-vae-tf,代码行数:37,代码来源:hyperspherical_uniform.py

示例2: _verify_input

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_integer [as 别名]
def _verify_input(tensor_list, labels, probs_list):
  """Verify that batched inputs are well-formed."""
  checked_probs_list = []
  for probs in probs_list:
    # Since number of classes shouldn't change at runtime, probalities shape
    # should be fully defined.
    probs.get_shape().assert_is_fully_defined()

    # Probabilities must be 1D.
    probs.get_shape().assert_has_rank(1)

    # Probabilities must be nonnegative and sum to one.
    tol = 1e-6
    prob_sum = math_ops.reduce_sum(probs)
    checked_probs = control_flow_ops.with_dependencies([
        check_ops.assert_non_negative(probs),
        check_ops.assert_less(prob_sum, 1.0 + tol),
        check_ops.assert_less(1.0 - tol, prob_sum)
    ], probs)
    checked_probs_list.append(checked_probs)

  # All probabilities should be the same length.
  prob_length = checked_probs_list[0].get_shape().num_elements()
  for checked_prob in checked_probs_list:
    if checked_prob.get_shape().num_elements() != prob_length:
      raise ValueError('Probability parameters must have the same length.')

  # Labels tensor should only have batch dimension.
  labels.get_shape().assert_has_rank(1)

  for tensor in tensor_list:
    # Data tensor should have a batch dimension.
    tensor_shape = tensor.get_shape().with_rank_at_least(1)

    # Data and label batch dimensions must be compatible.
    tensor_shape[0].assert_is_compatible_with(labels.get_shape()[0])

  # Data and labels must have the same, strictly positive batch size. Since we
  # can't assume we know the batch size at graph creation, add runtime checks.
  labels_batch_size = array_ops.shape(labels)[0]
  lbl_assert = check_ops.assert_positive(labels_batch_size)

  # Make each tensor depend on its own checks.
  labels = control_flow_ops.with_dependencies([lbl_assert], labels)
  tensor_list = [
      control_flow_ops.with_dependencies([
          lbl_assert,
          check_ops.assert_equal(array_ops.shape(x)[0], labels_batch_size)
      ], x) for x in tensor_list
  ]

  # Label's classes must be integers 0 <= x < num_classes.
  labels = control_flow_ops.with_dependencies([
      check_ops.assert_integer(labels), check_ops.assert_non_negative(labels),
      check_ops.assert_less(labels, math_ops.cast(prob_length, labels.dtype))
  ], labels)

  return tensor_list, labels, checked_probs_list 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:60,代码来源:sampling_ops.py

示例3: _verify_input

# 需要导入模块: from tensorflow.python.ops import check_ops [as 别名]
# 或者: from tensorflow.python.ops.check_ops import assert_integer [as 别名]
def _verify_input(tensor_list, labels, probs_list):
  """Verify that batched inputs are well-formed."""
  checked_probs_list = []
  for probs in probs_list:
    # Since number of classes shouldn't change at runtime, probalities shape
    # should be fully defined.
    probs.get_shape().assert_is_fully_defined()

    # Probabilities must be 1D.
    probs.get_shape().assert_has_rank(1)

    # Probabilities must be nonnegative and sum to one.
    tol = 1e-6
    prob_sum = math_ops.reduce_sum(probs)
    checked_probs = control_flow_ops.with_dependencies(
        [check_ops.assert_non_negative(probs),
         check_ops.assert_less(prob_sum, 1.0 + tol),
         check_ops.assert_less(1.0 - tol, prob_sum)],
        probs)
    checked_probs_list.append(checked_probs)

  # All probabilities should be the same length.
  prob_length = checked_probs_list[0].get_shape().num_elements()
  for checked_prob in checked_probs_list:
    if checked_prob.get_shape().num_elements() != prob_length:
      raise ValueError('Probability parameters must have the same length.')

  # Labels tensor should only have batch dimension.
  labels.get_shape().assert_has_rank(1)

  for tensor in tensor_list:
    # Data tensor should have a batch dimension.
    tensor_shape = tensor.get_shape().with_rank_at_least(1)

    # Data and label batch dimensions must be compatible.
    tensor_shape[0].assert_is_compatible_with(labels.get_shape()[0])

  # Data and labels must have the same, strictly positive batch size. Since we
  # can't assume we know the batch size at graph creation, add runtime checks.
  labels_batch_size = array_ops.shape(labels)[0]
  lbl_assert = check_ops.assert_positive(labels_batch_size)

  # Make each tensor depend on its own checks.
  labels = control_flow_ops.with_dependencies([lbl_assert], labels)
  tensor_list = [control_flow_ops.with_dependencies(
      [lbl_assert,
       check_ops.assert_equal(array_ops.shape(x)[0], labels_batch_size)],
      x) for x in tensor_list]

  # Label's classes must be integers 0 <= x < num_classes.
  labels = control_flow_ops.with_dependencies(
      [check_ops.assert_integer(labels),
       check_ops.assert_non_negative(labels),
       check_ops.assert_less(labels, math_ops.cast(prob_length, labels.dtype))],
      labels)

  return tensor_list, labels, checked_probs_list 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:59,代码来源:sampling_ops.py


注:本文中的tensorflow.python.ops.check_ops.assert_integer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。