本文整理汇总了Python中tensorflow.python.ops.array_ops.zeros方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.zeros方法的具体用法?Python array_ops.zeros怎么用?Python array_ops.zeros使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.zeros方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_local
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_local(name, shape, collections=None, validate_shape=True,
dtype=tf.float32):
"""Creates a new local variable.
Args:
name: The name of the new or existing variable.
shape: Shape of the new or existing variable.
collections: A list of collection names to which the Variable will be added.
validate_shape: Whether to validate the shape of the variable.
dtype: Data type of the variables.
Returns:
The created variable.
"""
# Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
collections = list(collections or [])
collections += [ops.GraphKeys.LOCAL_VARIABLES]
return variables.Variable(
initial_value=array_ops.zeros(shape, dtype=dtype),
name=name,
trainable=False,
collections=collections,
validate_shape=validate_shape)
示例2: zero_state
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def zero_state(self, batch_size, dtype):
"""Return zero-filled state tensor(s).
Args:
batch_size: int, float, or unit Tensor representing the batch size.
dtype: the data type to use for the state.
Returns:
If `state_size` is an int or TensorShape, then the return value is a
`N-D` tensor of shape `[batch_size x state_size]` filled with zeros.
If `state_size` is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of `2-D` tensors with
the shapes `[batch_size x s]` for each s in `state_size`.
"""
with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
state_size = self.state_size
return _zero_state_tensors(state_size, batch_size, dtype)
示例3: _create_local
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_local(name, shape, collections=None, validate_shape=True,
dtype=dtypes.float32):
"""Creates a new local variable.
Args:
name: The name of the new or existing variable.
shape: Shape of the new or existing variable.
collections: A list of collection names to which the Variable will be added.
validate_shape: Whether to validate the shape of the variable.
dtype: Data type of the variables.
Returns:
The created variable.
"""
# Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
collections = list(collections or [])
collections += [ops.GraphKeys.LOCAL_VARIABLES]
return variable_scope.variable(
array_ops.zeros(shape, dtype=dtype),
name=name,
trainable=False,
collections=collections,
validate_shape=validate_shape)
示例4: _SliceGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _SliceGrad(op, grad):
"""Gradient for Slice op."""
# Create an Nx2 padding where the first column represents how many
# zeros are to be prepended for each dimension, and the second
# column indicates how many zeros are appended.
#
# The number of zeros to append is the shape of the input
# elementwise-subtracted by both the begin vector and sizes vector.
#
# Some more reshaping is needed to assemble this tensor with the
# right dimensions.
input_vec = op.inputs[0]
begin_vec = op.inputs[1]
input_rank = array_ops.rank(input_vec)
slice_size = array_ops.shape(op.outputs[0])
shape = array_ops.stack([input_rank, 1])
before_pad = array_ops.reshape(begin_vec, shape)
after_pad = array_ops.reshape(
array_ops.shape(input_vec) - slice_size - begin_vec, shape)
paddings = array_ops.concat([before_pad, after_pad], 1)
return array_ops.pad(grad, paddings), None, None
示例5: _MatrixSetDiagGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _MatrixSetDiagGrad(op, grad):
"""Gradient for MatrixSetDiag."""
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例6: _SegmentMinOrMaxGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _SegmentMinOrMaxGrad(op, grad, is_sorted):
"""Gradient for SegmentMin and (unsorted) SegmentMax. They share similar code."""
zeros = array_ops.zeros(array_ops.shape(op.inputs[0]),
dtype=op.inputs[0].dtype)
# Get the number of selected (minimum or maximum) elements in each segment.
gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
if is_sorted:
num_selected = math_ops.segment_sum(math_ops.cast(is_selected, grad.dtype),
op.inputs[1])
else:
num_selected = math_ops.unsorted_segment_sum(math_ops.cast(is_selected, grad.dtype),
op.inputs[1], op.inputs[2])
# Compute the gradient for each segment. The gradient for the ith segment is
# divided evenly among the selected elements in that segment.
weighted_grads = math_ops.div(grad, num_selected)
gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])
if is_sorted:
return array_ops.where(is_selected, gathered_grads, zeros), None
else:
return array_ops.where(is_selected, gathered_grads, zeros), None, None
示例7: count_params
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def count_params(x):
"""Returns the number of scalars in a Keras variable.
Arguments:
x: Keras variable.
Returns:
Integer, the number of scalars in `x`.
Example:
```python
>>> kvar = K.zeros((2,3))
>>> K.count_params(kvar)
6
>>> K.eval(kvar)
array([[ 0., 0., 0.],
[ 0., 0., 0.]], dtype=float32)
```
"""
shape = x.get_shape()
return np.prod([shape[i]._value for i in range(len(shape))])
示例8: random_binomial
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def random_binomial(shape, p=0.0, dtype=None, seed=None):
"""Returns a tensor with random binomial distribution of values.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
p: A float, `0. <= p <= 1`, probability of binomial distribution.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return array_ops.where(
random_ops.random_uniform(shape, dtype=dtype, seed=seed) <= p,
array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype))
示例9: initial_alignments
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def initial_alignments(self, batch_size, dtype):
"""Creates the initial alignment values for the `AttentionWrapper` class.
This is important for AttentionMechanisms that use the previous alignment
to calculate the alignment at the next time step (e.g. monotonic attention).
The default behavior is to return a tensor of all zeros.
Args:
batch_size: `int32` scalar, the batch_size.
dtype: The `dtype`.
Returns:
A `dtype` tensor shaped `[batch_size, alignments_size]`
(`alignments_size` is the values' `max_time`).
"""
max_time = self._alignments_size
return _zero_state_tensors(max_time, batch_size, dtype)
示例10: initialize
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def initialize(self, name=None):
"""Initialize the decoder.
Args:
name: Name scope for any created operations.
Returns:
`(finished, start_inputs, initial_state)`.
"""
finished, start_inputs = self._finished, self._start_inputs
initial_state = BeamSearchDecoderState(
cell_state=self._initial_cell_state,
log_probs=array_ops.zeros(
[self._batch_size, self._beam_width],
dtype=nest.flatten(self._initial_cell_state)[0].dtype),
finished=finished,
lengths=array_ops.zeros(
[self._batch_size, self._beam_width], dtype=dtypes.int32))
return (finished, start_inputs, initial_state)
示例11: _mean
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _mean(self):
shape = self.batch_shape.concatenate(self.event_shape)
has_static_shape = shape.is_fully_defined()
if not has_static_shape:
shape = array_ops.concat([
self.batch_shape_tensor(),
self.event_shape_tensor(),
], 0)
if self.loc is None:
return array_ops.zeros(shape, self.dtype)
if has_static_shape and shape == self.loc.get_shape():
return array_ops.identity(self.loc)
# Add dummy tensor of zeros to broadcast. This is only necessary if shape
# != self.loc.shape, but we could not determine if this is the case.
return array_ops.identity(self.loc) + array_ops.zeros(shape, self.dtype)
示例12: _shape_tensor
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _shape_tensor(self):
# Avoid messy broadcasting if possible.
if self.shape.is_fully_defined():
return ops.convert_to_tensor(
self.shape.as_list(), dtype=dtypes.int32, name="shape")
# Don't check the matrix dimensions. That would add unnecessary Asserts to
# the graph. Things will fail at runtime naturally if shapes are
# incompatible.
matrix_shape = array_ops.stack([
self.operators[0].range_dimension_tensor(),
self.operators[-1].domain_dimension_tensor()
])
# Dummy Tensor of zeros. Will never be materialized.
zeros = array_ops.zeros(shape=self.operators[0].batch_shape_tensor())
for operator in self.operators[1:]:
zeros += array_ops.zeros(shape=operator.batch_shape_tensor())
batch_shape = array_ops.shape(zeros)
return array_ops.concat((batch_shape, matrix_shape), 0)
示例13: _create_local
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_local(name, shape, collections=None, validate_shape=True,
dtype=dtypes.float32):
"""Creates a new local variable.
Args:
name: The name of the new or existing variable.
shape: Shape of the new or existing variable.
collections: A list of collection names to which the Variable will be added.
validate_shape: Whether to validate the shape of the variable.
dtype: Data type of the variables.
Returns:
The created variable.
"""
# Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
collections = list(collections or [])
collections += [ops.GraphKeys.LOCAL_VARIABLES]
return variables.Variable(
initial_value=array_ops.zeros(shape, dtype=dtype),
name=name,
trainable=False,
collections=collections,
validate_shape=validate_shape)
示例14: _MatrixSetDiagGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _MatrixSetDiagGrad(op, grad):
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例15: _create_zero_outputs
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_zero_outputs(size, dtype, batch_size):
"""Create a zero outputs Tensor structure."""
def _t(s):
return (s if isinstance(s, ops.Tensor) else constant_op.constant(
tensor_shape.TensorShape(s).as_list(),
dtype=dtypes.int32,
name="zero_suffix_shape"))
def _create(s, d):
return array_ops.zeros(
array_ops.concat(
([batch_size], _t(s)), axis=0), dtype=d)
return nest.map_structure(_create, size, dtype)