当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.zeros方法代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.zeros方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.zeros方法的具体用法?Python array_ops.zeros怎么用?Python array_ops.zeros使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.zeros方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_local

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_local(name, shape, collections=None, validate_shape=True,
                  dtype=tf.float32):
    """Creates a new local variable.
    Args:
        name: The name of the new or existing variable.
        shape: Shape of the new or existing variable.
        collections: A list of collection names to which the Variable will be added.
        validate_shape: Whether to validate the shape of the variable.
        dtype: Data type of the variables.
    Returns:
        The created variable.
    """
    # Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
    collections = list(collections or [])
    collections += [ops.GraphKeys.LOCAL_VARIABLES]
    return variables.Variable(
            initial_value=array_ops.zeros(shape, dtype=dtype),
            name=name,
            trainable=False,
            collections=collections,
            validate_shape=validate_shape) 
开发者ID:dengdan,项目名称:seglink,代码行数:23,代码来源:metrics.py

示例2: zero_state

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def zero_state(self, batch_size, dtype):
    """Return zero-filled state tensor(s).

    Args:
      batch_size: int, float, or unit Tensor representing the batch size.
      dtype: the data type to use for the state.

    Returns:
      If `state_size` is an int or TensorShape, then the return value is a
      `N-D` tensor of shape `[batch_size x state_size]` filled with zeros.

      If `state_size` is a nested list or tuple, then the return value is
      a nested list or tuple (of the same structure) of `2-D` tensors with
      the shapes `[batch_size x s]` for each s in `state_size`.
    """
    with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
      state_size = self.state_size
      return _zero_state_tensors(state_size, batch_size, dtype) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:20,代码来源:rnn_cell_impl.py

示例3: _create_local

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_local(name, shape, collections=None, validate_shape=True,
                  dtype=dtypes.float32):
  """Creates a new local variable.

  Args:
    name: The name of the new or existing variable.
    shape: Shape of the new or existing variable.
    collections: A list of collection names to which the Variable will be added.
    validate_shape: Whether to validate the shape of the variable.
    dtype: Data type of the variables.

  Returns:
    The created variable.
  """
  # Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
  collections = list(collections or [])
  collections += [ops.GraphKeys.LOCAL_VARIABLES]
  return variable_scope.variable(
      array_ops.zeros(shape, dtype=dtype),
      name=name,
      trainable=False,
      collections=collections,
      validate_shape=validate_shape) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:25,代码来源:metrics_impl.py

示例4: _SliceGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _SliceGrad(op, grad):
  """Gradient for Slice op."""
  # Create an Nx2 padding where the first column represents how many
  # zeros are to be prepended for each dimension, and the second
  # column indicates how many zeros are appended.
  #
  # The number of zeros to append is the shape of the input
  # elementwise-subtracted by both the begin vector and sizes vector.
  #
  # Some more reshaping is needed to assemble this tensor with the
  # right dimensions.
  input_vec = op.inputs[0]
  begin_vec = op.inputs[1]
  input_rank = array_ops.rank(input_vec)
  slice_size = array_ops.shape(op.outputs[0])

  shape = array_ops.stack([input_rank, 1])
  before_pad = array_ops.reshape(begin_vec, shape)
  after_pad = array_ops.reshape(
      array_ops.shape(input_vec) - slice_size - begin_vec, shape)
  paddings = array_ops.concat([before_pad, after_pad], 1)
  return array_ops.pad(grad, paddings), None, None 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:24,代码来源:array_grad.py

示例5: _MatrixSetDiagGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _MatrixSetDiagGrad(op, grad):
  """Gradient for MatrixSetDiag."""
  input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
  diag_shape = op.inputs[1].get_shape()
  batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
  matrix_shape = input_shape[-2:]
  if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
    diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
  else:
    with ops.colocate_with(grad):
      grad_shape = array_ops.shape(grad)
      grad_rank = array_ops.rank(grad)
      batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
      matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
      min_dim = math_ops.reduce_min(matrix_shape)
      diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
  grad_input = array_ops.matrix_set_diag(
      grad, array_ops.zeros(
          diag_shape, dtype=grad.dtype))
  grad_diag = array_ops.matrix_diag_part(grad)
  return (grad_input, grad_diag) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:array_grad.py

示例6: _SegmentMinOrMaxGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _SegmentMinOrMaxGrad(op, grad, is_sorted):
  """Gradient for SegmentMin and (unsorted) SegmentMax. They share similar code."""
  zeros = array_ops.zeros(array_ops.shape(op.inputs[0]),
                          dtype=op.inputs[0].dtype)

  # Get the number of selected (minimum or maximum) elements in each segment.
  gathered_outputs = array_ops.gather(op.outputs[0], op.inputs[1])
  is_selected = math_ops.equal(op.inputs[0], gathered_outputs)
  if is_sorted:
    num_selected = math_ops.segment_sum(math_ops.cast(is_selected, grad.dtype),
                                        op.inputs[1])
  else:
    num_selected = math_ops.unsorted_segment_sum(math_ops.cast(is_selected, grad.dtype),
                                                 op.inputs[1], op.inputs[2])

  # Compute the gradient for each segment. The gradient for the ith segment is
  # divided evenly among the selected elements in that segment.
  weighted_grads = math_ops.div(grad, num_selected)
  gathered_grads = array_ops.gather(weighted_grads, op.inputs[1])

  if is_sorted:
    return array_ops.where(is_selected, gathered_grads, zeros), None
  else:
    return array_ops.where(is_selected, gathered_grads, zeros), None, None 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:26,代码来源:math_grad.py

示例7: count_params

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def count_params(x):
  """Returns the number of scalars in a Keras variable.

  Arguments:
      x: Keras variable.

  Returns:
      Integer, the number of scalars in `x`.

  Example:
  ```python
      >>> kvar = K.zeros((2,3))
      >>> K.count_params(kvar)
      6
      >>> K.eval(kvar)
      array([[ 0.,  0.,  0.],
             [ 0.,  0.,  0.]], dtype=float32)
  ```
  """
  shape = x.get_shape()
  return np.prod([shape[i]._value for i in range(len(shape))]) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:backend.py

示例8: random_binomial

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def random_binomial(shape, p=0.0, dtype=None, seed=None):
  """Returns a tensor with random binomial distribution of values.

  Arguments:
      shape: A tuple of integers, the shape of tensor to create.
      p: A float, `0. <= p <= 1`, probability of binomial distribution.
      dtype: String, dtype of returned tensor.
      seed: Integer, random seed.

  Returns:
      A tensor.
  """
  if dtype is None:
    dtype = floatx()
  if seed is None:
    seed = np.random.randint(10e6)
  return array_ops.where(
      random_ops.random_uniform(shape, dtype=dtype, seed=seed) <= p,
      array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype)) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:21,代码来源:backend.py

示例9: initial_alignments

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def initial_alignments(self, batch_size, dtype):
    """Creates the initial alignment values for the `AttentionWrapper` class.

    This is important for AttentionMechanisms that use the previous alignment
    to calculate the alignment at the next time step (e.g. monotonic attention).

    The default behavior is to return a tensor of all zeros.

    Args:
      batch_size: `int32` scalar, the batch_size.
      dtype: The `dtype`.

    Returns:
      A `dtype` tensor shaped `[batch_size, alignments_size]`
      (`alignments_size` is the values' `max_time`).
    """
    max_time = self._alignments_size
    return _zero_state_tensors(max_time, batch_size, dtype) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:20,代码来源:attention_wrapper.py

示例10: initialize

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def initialize(self, name=None):
    """Initialize the decoder.

    Args:
      name: Name scope for any created operations.

    Returns:
      `(finished, start_inputs, initial_state)`.
    """
    finished, start_inputs = self._finished, self._start_inputs

    initial_state = BeamSearchDecoderState(
        cell_state=self._initial_cell_state,
        log_probs=array_ops.zeros(
            [self._batch_size, self._beam_width],
            dtype=nest.flatten(self._initial_cell_state)[0].dtype),
        finished=finished,
        lengths=array_ops.zeros(
            [self._batch_size, self._beam_width], dtype=dtypes.int32))

    return (finished, start_inputs, initial_state) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:beam_search_decoder.py

示例11: _mean

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _mean(self):
    shape = self.batch_shape.concatenate(self.event_shape)
    has_static_shape = shape.is_fully_defined()
    if not has_static_shape:
      shape = array_ops.concat([
          self.batch_shape_tensor(),
          self.event_shape_tensor(),
      ], 0)

    if self.loc is None:
      return array_ops.zeros(shape, self.dtype)

    if has_static_shape and shape == self.loc.get_shape():
      return array_ops.identity(self.loc)

    # Add dummy tensor of zeros to broadcast.  This is only necessary if shape
    # != self.loc.shape, but we could not determine if this is the case.
    return array_ops.identity(self.loc) + array_ops.zeros(shape, self.dtype) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:20,代码来源:vector_laplace_linear_operator.py

示例12: _shape_tensor

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _shape_tensor(self):
    # Avoid messy broadcasting if possible.
    if self.shape.is_fully_defined():
      return ops.convert_to_tensor(
          self.shape.as_list(), dtype=dtypes.int32, name="shape")

    # Don't check the matrix dimensions.  That would add unnecessary Asserts to
    # the graph.  Things will fail at runtime naturally if shapes are
    # incompatible.
    matrix_shape = array_ops.stack([
        self.operators[0].range_dimension_tensor(),
        self.operators[-1].domain_dimension_tensor()
    ])

    # Dummy Tensor of zeros.  Will never be materialized.
    zeros = array_ops.zeros(shape=self.operators[0].batch_shape_tensor())
    for operator in self.operators[1:]:
      zeros += array_ops.zeros(shape=operator.batch_shape_tensor())
    batch_shape = array_ops.shape(zeros)

    return array_ops.concat((batch_shape, matrix_shape), 0) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:linear_operator_composition.py

示例13: _create_local

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_local(name, shape, collections=None, validate_shape=True,
                  dtype=dtypes.float32):
  """Creates a new local variable.

  Args:
    name: The name of the new or existing variable.
    shape: Shape of the new or existing variable.
    collections: A list of collection names to which the Variable will be added.
    validate_shape: Whether to validate the shape of the variable.
    dtype: Data type of the variables.

  Returns:
    The created variable.
  """
  # Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
  collections = list(collections or [])
  collections += [ops.GraphKeys.LOCAL_VARIABLES]
  return variables.Variable(
      initial_value=array_ops.zeros(shape, dtype=dtype),
      name=name,
      trainable=False,
      collections=collections,
      validate_shape=validate_shape) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:25,代码来源:metrics_impl.py

示例14: _MatrixSetDiagGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _MatrixSetDiagGrad(op, grad):
  input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
  diag_shape = op.inputs[1].get_shape()
  batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
  matrix_shape = input_shape[-2:]
  if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
    diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
  else:
    with ops.colocate_with(grad):
      grad_shape = array_ops.shape(grad)
      grad_rank = array_ops.rank(grad)
      batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
      matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
      min_dim = math_ops.reduce_min(matrix_shape)
      diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
  grad_input = array_ops.matrix_set_diag(
      grad, array_ops.zeros(
          diag_shape, dtype=grad.dtype))
  grad_diag = array_ops.matrix_diag_part(grad)
  return (grad_input, grad_diag) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:22,代码来源:array_grad.py

示例15: _create_zero_outputs

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import zeros [as 别名]
def _create_zero_outputs(size, dtype, batch_size):
    """Create a zero outputs Tensor structure."""
    def _t(s):
        return (s if isinstance(s, ops.Tensor) else constant_op.constant(
            tensor_shape.TensorShape(s).as_list(),
            dtype=dtypes.int32,
            name="zero_suffix_shape"))

    def _create(s, d):
        return array_ops.zeros(
            array_ops.concat(
                ([batch_size], _t(s)), axis=0), dtype=d)

    return nest.map_structure(_create, size, dtype) 
开发者ID:hirofumi0810,项目名称:tensorflow_end2end_speech_recognition,代码行数:16,代码来源:dynamic_decoder.py


注:本文中的tensorflow.python.ops.array_ops.zeros方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。