本文整理汇总了Python中tensorflow.python.ops.array_ops.shape_n方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.shape_n方法的具体用法?Python array_ops.shape_n怎么用?Python array_ops.shape_n使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.shape_n方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _Conv2DGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape_n [as 别名]
def _Conv2DGrad(op, grad):
strides = op.get_attr("strides")
padding = op.get_attr("padding")
use_cudnn_on_gpu = op.get_attr("use_cudnn_on_gpu")
data_format = op.get_attr("data_format")
shape_0, shape_1 = array_ops.shape_n([op.inputs[0], op.inputs[1]])
return [nn_ops.conv2d_backprop_input(shape_0,
op.inputs[1],
grad,
strides,
padding,
use_cudnn_on_gpu,
data_format),
nn_ops.conv2d_backprop_filter(op.inputs[0],
shape_1,
grad,
strides,
padding,
use_cudnn_on_gpu,
data_format)]
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:22,代码来源:nn_grad.py
示例2: _verify_compatible_image_shapes
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape_n [as 别名]
def _verify_compatible_image_shapes(img1, img2):
"""Checks if two image tensors are compatible for applying SSIM or PSNR.
This function checks if two sets of images have ranks at least 3, and if the
last three dimensions match.
Args:
img1: Tensor containing the first image batch.
img2: Tensor containing the second image batch.
Returns:
A tuple containing: the first tensor shape, the second tensor shape, and a
list of control_flow_ops.Assert() ops implementing the checks.
Raises:
ValueError: When static shape check fails.
"""
shape1 = img1.get_shape().with_rank_at_least(3)
shape2 = img2.get_shape().with_rank_at_least(3)
shape1[-3:].assert_is_compatible_with(shape2[-3:])
if shape1.ndims is not None and shape2.ndims is not None:
for dim1, dim2 in zip(reversed(shape1.dims[:-3]),
reversed(shape2.dims[:-3])):
if not (dim1 == 1 or dim2 == 1 or dim1.is_compatible_with(dim2)):
raise ValueError('Two images are not compatible: %s and %s' % (shape1, shape2))
shape1, shape2 = array_ops.shape_n([img1, img2])
checks = []
checks.append(control_flow_ops.Assert(
math_ops.greater_equal(array_ops.size(shape1), 3),
[shape1, shape2], summarize=10))
checks.append(control_flow_ops.Assert(
math_ops.reduce_all(math_ops.equal(shape1[-3:], shape2[-3:])),
[shape1, shape2], summarize=10))
return shape1, shape2, checks
示例3: _ssim_per_channel
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape_n [as 别名]
def _ssim_per_channel(img1, img2, max_val=1.0):
filter_size = constant_op.constant(11, dtype=dtypes.int32)
filter_sigma = constant_op.constant(1.5, dtype=img1.dtype)
shape1, shape2 = array_ops.shape_n([img1, img2])
checks = [
control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
shape1[-3:-1], filter_size)), [shape1, filter_size], summarize=8),
control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
shape2[-3:-1], filter_size)), [shape2, filter_size], summarize=8)]
# Enforce the check to run before computation.
with ops.control_dependencies(checks):
img1 = array_ops.identity(img1)
kernel = _fspecial_gauss(filter_size, filter_sigma)
kernel = array_ops.tile(kernel, multiples=[1, 1, shape1[-1], 1])
compensation = 1.0
def reducer(x):
shape = array_ops.shape(x)
x = array_ops.reshape(x, shape=array_ops.concat([[-1], shape[-3:]], 0))
y = nn.depthwise_conv2d(x, kernel, strides=[1, 1, 1, 1], padding='VALID')
return array_ops.reshape(y, array_ops.concat([shape[:-3],
array_ops.shape(y)[1:]], 0))
luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation)
# Average over the second and the third from the last: height, width.
axes = constant_op.constant([-3, -2], dtype=dtypes.int32)
ssim_val = math_ops.reduce_mean(luminance * cs, axes)
cs = math_ops.reduce_mean(cs, axes)
luminance = math_ops.reduce_mean(luminance, axes)
return ssim_val, cs, luminance