当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.shape方法代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.shape方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.shape方法的具体用法?Python array_ops.shape怎么用?Python array_ops.shape使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.shape方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: scheduled_sampling

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
    with variable_scope.variable_scope("ScheduledEmbedding"):
      # Return -1s where we do not sample, and sample_ids elsewhere
      select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
      select_sample = select_sampler.sample(sample_shape=batch_size)
      sample_ids = array_ops.where(
                  select_sample,
                  tf.range(batch_size),
                  gen_array_ops.fill([batch_size], -1))
      where_sampling = math_ops.cast(
          array_ops.where(sample_ids > -1), tf.int32)
      where_not_sampling = math_ops.cast(
          array_ops.where(sample_ids <= -1), tf.int32)
      _estimate = array_ops.gather_nd(estimate, where_sampling)
      _true = array_ops.gather_nd(true, where_not_sampling)

      base_shape = array_ops.shape(true)
      result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
      result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
      result = result1 + result2
      return result1 + result2 
开发者ID:yaserkl,项目名称:TransferRL,代码行数:23,代码来源:run_summarization.py

示例2: _parse_image

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def _parse_image(self, image_path):
        """
        Function that loads the images given the path.
        Args:
            image_path: Path to an image file.
        Returns:
            image: A tf tensor of the loaded image.
        """

        image = tf.io.read_file(image_path)
        image = tf.image.decode_jpeg(image, channels=3)
        image = tf.image.convert_image_dtype(image, tf.float32)

        # Check if image is large enough
        if tf.keras.backend.image_data_format() == 'channels_last':
            shape = array_ops.shape(image)[:2]
        else:
            shape = array_ops.shape(image)[1:]
        cond = math_ops.reduce_all(shape >= tf.constant(self.image_size))

        image = tf.cond(cond, lambda: tf.identity(image),
                        lambda: tf.image.resize(image, [self.image_size, self.image_size]))

        return image 
开发者ID:HasnainRaz,项目名称:Fast-SRGAN,代码行数:26,代码来源:dataloader.py

示例3: __init__

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def __init__(self, initialize_fn, sample_fn, next_inputs_fn,
                 sample_ids_shape=None, sample_ids_dtype=None):
        """Initializer.

        Args:
          initialize_fn: callable that returns `(finished, next_inputs)`
            for the first iteration.
          sample_fn: callable that takes `(time, outputs, state)`
            and emits tensor `sample_ids`.
          next_inputs_fn: callable that takes `(time, outputs, state, sample_ids)`
            and emits `(finished, next_inputs, next_state)`.
          sample_ids_shape: Either a list of integers, or a 1-D Tensor of type
            `int32`, the shape of each value in the `sample_ids` batch. Defaults to
            a scalar.
          sample_ids_dtype: The dtype of the `sample_ids` tensor. Defaults to int32.
        """
        self._initialize_fn = initialize_fn
        self._sample_fn = sample_fn
        self._next_inputs_fn = next_inputs_fn
        self._batch_size = None
        self._sample_ids_shape = tensor_shape.TensorShape(sample_ids_shape or [])
        self._sample_ids_dtype = sample_ids_dtype or dtypes.int32 
开发者ID:qkaren,项目名称:Counterfactual-StoryRW,代码行数:24,代码来源:tf_helpers.py

示例4: call

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def call(self, inputs):
    """Invokes this layer.

    Parameters
    ----------
    inputs: list
      Should be of form `inputs=[coords, nbr_list]` where `coords` is a tensor of shape `(None, N, 3)` and `nbr_list` is a list.
    """
    if len(inputs) != 2:
      raise ValueError("InteratomicDistances requires coords,nbr_list")
    coords, nbr_list = (inputs[0], inputs[1])
    N_atoms, M_nbrs, ndim = self.N_atoms, self.M_nbrs, self.ndim
    # Shape (N_atoms, M_nbrs, ndim)
    nbr_coords = tf.gather(coords, nbr_list)
    # Shape (N_atoms, M_nbrs, ndim)
    tiled_coords = tf.tile(
        tf.reshape(coords, (N_atoms, 1, ndim)), (1, M_nbrs, 1))
    # Shape (N_atoms, M_nbrs)
    return tf.reduce_sum((tiled_coords - nbr_coords)**2, axis=2) 
开发者ID:deepchem,项目名称:deepchem,代码行数:21,代码来源:layers.py

示例5: build

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def build(self, input_shape):
    # Generate the nb_affine weights and biases
    num_deg = 2 * self.max_degree + (1 - self.min_degree)
    self.W_list = [
        self.add_weight(
            name='kernel',
            shape=(int(input_shape[0][-1]), self.out_channel),
            initializer='glorot_uniform',
            trainable=True) for k in range(num_deg)
    ]
    self.b_list = [
        self.add_weight(
            name='bias',
            shape=(self.out_channel,),
            initializer='zeros',
            trainable=True) for k in range(num_deg)
    ]
    self.built = True 
开发者ID:deepchem,项目名称:deepchem,代码行数:20,代码来源:layers.py

示例6: get_cells

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def get_cells(self):
    """Returns the locations of all grid points in box.

    Suppose start is -10 Angstrom, stop is 10 Angstrom, nbr_cutoff is 1.
    Then would return a list of length 20^3 whose entries would be
    [(-10, -10, -10), (-10, -10, -9), ..., (9, 9, 9)]

    Returns
    -------
    cells: tf.Tensor
      (n_cells, ndim) shape.
    """
    start, stop, nbr_cutoff = self.start, self.stop, self.nbr_cutoff
    mesh_args = [tf.range(start, stop, nbr_cutoff) for _ in range(self.ndim)]
    return tf.cast(
        tf.reshape(
            tf.transpose(tf.stack(tf.meshgrid(*mesh_args))),
            (self.n_cells, self.ndim)), tf.float32) 
开发者ID:deepchem,项目名称:deepchem,代码行数:20,代码来源:layers.py

示例7: radial_symmetry_function

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def radial_symmetry_function(self, R, rc, rs, e):
    """Calculates radial symmetry function.

    B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_filters

    Parameters
    ----------
    R: tf.Tensor of shape (B, N, M)
      Distance matrix.
    rc: float
      Interaction cutoff [Angstrom].
    rs: float
      Gaussian distance matrix mean.
    e: float
      Gaussian distance matrix width.

    Returns
    -------
    retval: tf.Tensor of shape (B, N, M)
      Radial symmetry function (before summation)
    """
    K = self.gaussian_distance_matrix(R, rs, e)
    FC = self.radial_cutoff(R, rc)
    return tf.multiply(K, FC) 
开发者ID:deepchem,项目名称:deepchem,代码行数:26,代码来源:layers.py

示例8: distance_matrix

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def distance_matrix(self, D):
    """Calcuates the distance matrix from the distance tensor

    B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

    Parameters
    ----------
    D: tf.Tensor of shape (B, N, M, d)
      Distance tensor.

    Returns
    -------
    R: tf.Tensor of shape (B, N, M)
       Distance matrix.
    """
    R = tf.reduce_sum(tf.multiply(D, D), 3)
    R = tf.sqrt(R)
    return R 
开发者ID:deepchem,项目名称:deepchem,代码行数:20,代码来源:layers.py

示例9: __init__

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def __init__(self, num_filters, **kwargs):
    """
    Parameters
    ----------
    num_filters: int
      Number of filters to have in the output

    in_layers: list of Layers or tensors
      [V, A, mask]
      V are the vertex features must be of shape (batch, vertex, channel)

      A are the adjacency matrixes for each graph
        Shape (batch, from_vertex, adj_matrix, to_vertex)

      mask is optional, to be used when not every graph has the
      same number of vertices

    Returns: tf.tensor
    Returns a tf.tensor with a graph convolution applied
    The shape will be (batch, vertex, self.num_filters)
    """
    super(GraphCNN, self).__init__(**kwargs)
    self.num_filters = num_filters 
开发者ID:deepchem,项目名称:deepchem,代码行数:25,代码来源:layers.py

示例10: dense_to_sparse

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
  """Converts a dense tensor into a sparse tensor.

  An example use would be to convert dense labels to sparse ones
  so that they can be fed to the ctc_loss.

  Args:
     tensor: An `int` `Tensor` to be converted to a `Sparse`.
     eos_token: An integer. It is part of the target label that signifies the
       end of a sentence.
     outputs_collections: Collection to add the outputs.
     scope: Optional scope for name_scope.
  """
  with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
    tensor = ops.convert_to_tensor(tensor)
    indices = array_ops.where(
        math_ops.not_equal(tensor, constant_op.constant(eos_token,
                                                        tensor.dtype)))
    values = array_ops.gather_nd(tensor, indices)
    shape = array_ops.shape(tensor, out_type=dtypes.int64)
    outputs = sparse_tensor.SparseTensor(indices, values, shape)
    return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:24,代码来源:layers.py

示例11: flatten

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def flatten(inputs, outputs_collections=None, scope=None):
  """Flattens the input while maintaining the batch_size.

    Assumes that the first dimension represents the batch.

  Args:
    inputs: A tensor of size [batch_size, ...].
    outputs_collections: Collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    A flattened tensor with shape [batch_size, k].
  Raises:
    ValueError: If inputs rank is unknown or less than 2.
  """
  with ops.name_scope(scope, 'Flatten', [inputs]) as sc:
    inputs = ops.convert_to_tensor(inputs)
    outputs = core_layers.flatten(inputs)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:21,代码来源:layers.py

示例12: _dense_inner_flatten

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def _dense_inner_flatten(inputs, new_rank):
  """Helper function for `inner_flatten`."""
  rank_assertion = check_ops.assert_rank_at_least(
      inputs, new_rank, message='inputs has rank less than new_rank')
  with ops.control_dependencies([rank_assertion]):
    outer_dimensions = array_ops.strided_slice(
        array_ops.shape(inputs), [0], [new_rank - 1])
    new_shape = array_ops.concat((outer_dimensions, [-1]), 0)
    reshaped = array_ops.reshape(inputs, new_shape)

  # if `new_rank` is an integer, try to calculate new shape.
  if isinstance(new_rank, six.integer_types):
    static_shape = inputs.get_shape()
    if static_shape is not None and static_shape.dims is not None:
      static_shape = static_shape.as_list()
      static_outer_dims = static_shape[:new_rank - 1]
      static_inner_dims = static_shape[new_rank - 1:]
      flattened_dimension = 1
      for inner_dim in static_inner_dims:
        if inner_dim is None:
          flattened_dimension = None
          break
        flattened_dimension *= inner_dim
      reshaped.set_shape(static_outer_dims + [flattened_dimension])
  return reshaped 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:27,代码来源:layers.py

示例13: softmax

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def softmax(logits, scope=None):
  """Performs softmax on Nth dimension of N-dimensional logit tensor.

  For two-dimensional logits this reduces to tf.nn.softmax. The N-th dimension
  needs to have a specified number of elements (number of classes).

  Args:
    logits: N-dimensional `Tensor` with logits, where N > 1.
    scope: Optional scope for variable_scope.

  Returns:
    A `Tensor` with same shape and type as logits.
  """
  # TODO(jrru): Add axis argument which defaults to last dimension.
  with variable_scope.variable_scope(scope, 'softmax', [logits]):
    num_logits = utils.last_dimension(logits.get_shape(), min_rank=2)
    logits_2d = array_ops.reshape(logits, [-1, num_logits])
    predictions = nn.softmax(logits_2d)
    predictions = array_ops.reshape(predictions, array_ops.shape(logits))
    if not context.executing_eagerly():
      predictions.set_shape(logits.get_shape())
    return predictions 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:24,代码来源:layers.py

示例14: _ImageDimensions

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def _ImageDimensions(image):
    """Returns the dimensions of an image tensor.
    Args:
      image: A 3-D Tensor of shape `[height, width, channels]`.
    Returns:
      A list of `[height, width, channels]` corresponding to the dimensions of the
        input image.  Dimensions that are statically known are python integers,
        otherwise they are integer scalar tensors.
    """
    if image.get_shape().is_fully_defined():
        return image.get_shape().as_list()
    else:
        static_shape = image.get_shape().with_rank(3).as_list()
        dynamic_shape = array_ops.unstack(array_ops.shape(image), 3)
        return [s if s is not None else d
                for s, d in zip(static_shape, dynamic_shape)] 
开发者ID:dengdan,项目名称:seglink,代码行数:18,代码来源:tf_image.py

示例15: fix_image_flip_shape

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import shape [as 别名]
def fix_image_flip_shape(image, result):
    """Set the shape to 3 dimensional if we don't know anything else.
    Args:
      image: original image size
      result: flipped or transformed image
    Returns:
      An image whose shape is at least None,None,None.
    """
    image_shape = image.get_shape()
    if image_shape == tensor_shape.unknown_shape():
        result.set_shape([None, None, None])
    else:
        result.set_shape(image_shape)
    return result


# =========================================================================== #
# Image + BBoxes methods: cropping, resizing, flipping, ...
# =========================================================================== # 
开发者ID:dengdan,项目名称:seglink,代码行数:21,代码来源:tf_image.py


注:本文中的tensorflow.python.ops.array_ops.shape方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。