本文整理汇总了Python中tensorflow.python.ops.array_ops.sequence_mask方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.sequence_mask方法的具体用法?Python array_ops.sequence_mask怎么用?Python array_ops.sequence_mask使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.sequence_mask方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: advanced_reduce_sum
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def advanced_reduce_sum(values, values_length, axis):
""" Reudces sum at `axis`.
Args:
values: A tensor with shape [batch, time, dim] or [time, batch, dim]
values_length: A tensor with shape [batch,]
axis: The axis indicating time, 0/1.
Returns: The reduced tensor with shape [batch, dim]
"""
# [batch_size, time]
mask = array_ops.sequence_mask(
lengths=values_length,
maxlen=array_ops.shape(values)[axis],
dtype=dtypes.float32)
if axis == 0:
mask = array_ops.transpose(mask, perm=[1, 0])
masked_values = values * array_ops.expand_dims(mask, axis=2)
return math_ops.reduce_sum(masked_values, axis=axis)
示例2: _cdf
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def _cdf(self, k):
k = ops.convert_to_tensor(k, name="k")
if self.validate_args:
k = distribution_util.embed_check_integer_casting_closed(
k, target_dtype=dtypes.int32)
k, probs = _broadcast_cat_event_and_params(
k, self.probs, base_dtype=self.dtype.base_dtype)
# batch-flatten everything in order to use `sequence_mask()`.
batch_flattened_probs = array_ops.reshape(probs,
(-1, self._event_size))
batch_flattened_k = array_ops.reshape(k, [-1])
to_sum_over = array_ops.where(
array_ops.sequence_mask(batch_flattened_k, self._event_size),
batch_flattened_probs,
array_ops.zeros_like(batch_flattened_probs))
batch_flattened_cdf = math_ops.reduce_sum(to_sum_over, axis=-1)
# Reshape back to the shape of the argument.
return array_ops.reshape(batch_flattened_cdf, array_ops.shape(k))
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:23,代码来源:categorical.py
示例3: _maybe_mask_score
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
if memory_sequence_length is None:
return score
message = ("All values in memory_sequence_length must greater than zero.")
with ops.control_dependencies(
[check_ops.assert_positive(memory_sequence_length, message=message)]):
score_mask = array_ops.sequence_mask(
memory_sequence_length, maxlen=array_ops.shape(score)[1])
score_mask_values = score_mask_value * array_ops.ones_like(score)
return array_ops.where(score_mask, score, score_mask_values)
示例4: mask_activations_and_labels
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def mask_activations_and_labels(activations, labels, sequence_lengths):
"""Remove entries outside `sequence_lengths` and returned flattened results.
Args:
activations: Output of the RNN, shape `[batch_size, padded_length, k]`.
labels: Label values, shape `[batch_size, padded_length]`.
sequence_lengths: A `Tensor` of shape `[batch_size]` with the unpadded
length of each sequence. If `None`, then each sequence is unpadded.
Returns:
activations_masked: `logit` values with those beyond `sequence_lengths`
removed for each batch. Batches are then concatenated. Shape
`[tf.sum(sequence_lengths), k]` if `sequence_lengths` is not `None` and
shape `[batch_size * padded_length, k]` otherwise.
labels_masked: Label values after removing unneeded entries. Shape
`[tf.sum(sequence_lengths)]` if `sequence_lengths` is not `None` and shape
`[batch_size * padded_length]` otherwise.
"""
with ops.name_scope(
'mask_activations_and_labels',
values=[activations, labels, sequence_lengths]):
labels_shape = array_ops.shape(labels)
batch_size = labels_shape[0]
padded_length = labels_shape[1]
if sequence_lengths is None:
flattened_dimension = padded_length * batch_size
activations_masked = array_ops.reshape(activations,
[flattened_dimension, -1])
labels_masked = array_ops.reshape(labels, [flattened_dimension])
else:
mask = array_ops.sequence_mask(sequence_lengths, padded_length)
activations_masked = array_ops.boolean_mask(activations, mask)
labels_masked = array_ops.boolean_mask(labels, mask)
return activations_masked, labels_masked
示例5: mask_activations_and_labels
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def mask_activations_and_labels(activations, labels, sequence_lengths):
"""Remove entries outside `sequence_lengths` and returned flattened results.
Args:
activations: Output of the RNN, shape `[batch_size, padded_length, k]`.
labels: Label values, shape `[batch_size, padded_length]`.
sequence_lengths: A `Tensor` of shape `[batch_size]` with the unpadded
length of each sequence. If `None`, then each sequence is unpadded.
Returns:
activations_masked: `logit` values with those beyond `sequence_lengths`
removed for each batch. Batches are then concatenated. Shape
`[tf.sum(sequence_lengths), k]` if `sequence_lengths` is not `None` and
shape `[batch_size * padded_length, k]` otherwise.
labels_masked: Label values after removing unneeded entries. Shape
`[tf.sum(sequence_lengths)]` if `sequence_lengths` is not `None` and shape
`[batch_size * padded_length]` otherwise.
"""
with ops.name_scope('mask_activations_and_labels',
values=[activations, labels, sequence_lengths]):
labels_shape = array_ops.shape(labels)
batch_size = labels_shape[0]
padded_length = labels_shape[1]
if sequence_lengths is None:
flattened_dimension = padded_length * batch_size
activations_masked = array_ops.reshape(activations,
[flattened_dimension, -1])
labels_masked = array_ops.reshape(labels, [flattened_dimension])
else:
mask = array_ops.sequence_mask(sequence_lengths, padded_length)
activations_masked = array_ops.boolean_mask(activations, mask)
labels_masked = array_ops.boolean_mask(labels, mask)
return activations_masked, labels_masked
示例6: _maybe_mask_score
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
if memory_sequence_length is None:
return score
message = ("All values in memory_sequence_length must greater than zero.")
with ops.control_dependencies(
[check_ops.assert_positive(memory_sequence_length, message=message)]):
score_mask = array_ops.sequence_mask(
memory_sequence_length, maxlen=array_ops.shape(score)[1])
score_mask_values = score_mask_value * array_ops.ones_like(score)
return array_ops.where(score_mask, score, score_mask_values)
示例7: _maybe_mask_score
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def _maybe_mask_score(score, memory_sequence_length, score_mask_value):
if memory_sequence_length is None:
return score
message = ("All values in memory_sequence_length must greater than zero.")
with ops.control_dependencies(
[check_ops.assert_positive(memory_sequence_length, message=message)]
):
score_mask = array_ops.sequence_mask(
memory_sequence_length, maxlen=array_ops.shape(score)[1]
)
score_mask_values = score_mask_value * array_ops.ones_like(score)
return array_ops.where(score_mask, score, score_mask_values)
示例8: _prepare_memory
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
"""Convert to tensor and possibly mask `memory`.
Args:
memory: `Tensor`, shaped `[batch_size, max_time, ...]`.
memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
check_inner_dims_defined: Python boolean. If `True`, the `memory`
argument's shape is checked to ensure all but the two outermost
dimensions are fully defined.
Returns:
A (possibly masked), checked, new `memory`.
Raises:
ValueError: If `check_inner_dims_defined` is `True` and not
`memory.shape[2:].is_fully_defined()`.
"""
memory = nest.map_structure(
lambda m: ops.convert_to_tensor(m, name="memory"), memory)
if memory_sequence_length is not None:
memory_sequence_length = ops.convert_to_tensor(
memory_sequence_length, name="memory_sequence_length")
if check_inner_dims_defined:
def _check_dims(m):
if not m.get_shape()[2:].is_fully_defined():
raise ValueError("Expected memory %s to have fully defined inner dims, "
"but saw shape: %s" % (m.name, m.get_shape()))
nest.map_structure(_check_dims, memory)
if memory_sequence_length is None:
seq_len_mask = None
else:
seq_len_mask = array_ops.sequence_mask(
memory_sequence_length,
maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
dtype=nest.flatten(memory)[0].dtype)
seq_len_batch_size = (
memory_sequence_length.shape[0].value
or array_ops.shape(memory_sequence_length)[0])
def _maybe_mask(m, seq_len_mask):
rank = m.get_shape().ndims
rank = rank if rank is not None else array_ops.rank(m)
extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
if memory_sequence_length is not None:
message = ("memory_sequence_length and memory tensor batch sizes do not "
"match.")
with ops.control_dependencies([
check_ops.assert_equal(
seq_len_batch_size, m_batch_size, message=message)]):
seq_len_mask = array_ops.reshape(
seq_len_mask,
array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
return m * seq_len_mask
else:
return m
return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory)
示例9: _prepare_memory
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import sequence_mask [as 别名]
def _prepare_memory(memory, memory_sequence_length, check_inner_dims_defined):
"""Convert to tensor and possibly mask `memory`.
Args:
memory: `Tensor`, shaped `[batch_size, max_time, ...]`.
memory_sequence_length: `int32` `Tensor`, shaped `[batch_size]`.
check_inner_dims_defined: Python boolean. If `True`, the `memory`
argument's shape is checked to ensure all but the two outermost
dimensions are fully defined.
Returns:
A (possibly masked), checked, new `memory`.
Raises:
ValueError: If `check_inner_dims_defined` is `True` and not
`memory.shape[2:].is_fully_defined()`.
"""
memory = nest.map_structure(
lambda m: ops.convert_to_tensor(m, name="memory"), memory)
if memory_sequence_length is not None:
memory_sequence_length = ops.convert_to_tensor(
memory_sequence_length, name="memory_sequence_length")
if check_inner_dims_defined:
def _check_dims(m):
if not m.get_shape()[2:].is_fully_defined():
raise ValueError("Expected memory %s to have fully defined inner dims, "
"but saw shape: %s" % (m.name, m.get_shape()))
nest.map_structure(_check_dims, memory)
if memory_sequence_length is None:
seq_len_mask = None
else:
seq_len_mask = array_ops.sequence_mask(
memory_sequence_length,
maxlen=array_ops.shape(nest.flatten(memory)[0])[1],
dtype=nest.flatten(memory)[0].dtype)
seq_len_batch_size = (
memory_sequence_length.shape[0].value
or array_ops.shape(memory_sequence_length)[0])
def _maybe_mask(m, seq_len_mask):
rank = m.get_shape().ndims
rank = rank if rank is not None else array_ops.rank(m)
extra_ones = array_ops.ones(rank - 2, dtype=dtypes.int32)
m_batch_size = m.shape[0].value or array_ops.shape(m)[0]
if memory_sequence_length is not None:
message = ("memory_sequence_length and memory tensor batch sizes do not "
"match.")
with ops.control_dependencies([
check_ops.assert_equal(
seq_len_batch_size, m_batch_size, message=message)]):
seq_len_mask = array_ops.reshape(
seq_len_mask,
array_ops.concat((array_ops.shape(seq_len_mask), extra_ones), 0))
return m * seq_len_mask
else:
return m
return nest.map_structure(lambda m: _maybe_mask(m, seq_len_mask), memory)