当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.rank方法代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.rank方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.rank方法的具体用法?Python array_ops.rank怎么用?Python array_ops.rank使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.rank方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _transpose_batch_time

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _transpose_batch_time(x):
    """Transpose the batch and time dimensions of a Tensor.
    Retains as much of the static shape information as possible.
    Args:
        x: A tensor of rank 2 or higher.
    Returns:
        x transposed along the first two dimensions.
    Raises:
        ValueError: if `x` is rank 1 or lower.
    """
    x_static_shape = x.get_shape()
    if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
        raise ValueError(
            "Expected input tensor %s to have rank at least 2, but saw shape: %s" %
            (x, x_static_shape))
    x_rank = array_ops.rank(x)
    x_t = array_ops.transpose(
        x, array_ops.concat(
            ([1, 0], math_ops.range(2, x_rank)), axis=0))
    x_t.set_shape(
        tensor_shape.TensorShape([
            x_static_shape[1].value, x_static_shape[0].value
        ]).concatenate(x_static_shape[2:]))
    return x_t 
开发者ID:hirofumi0810,项目名称:tensorflow_end2end_speech_recognition,代码行数:26,代码来源:dynamic_decoder.py

示例2: _flatten_outer_dims

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _flatten_outer_dims(logits):
  """Flattens logits' outer dimensions and keep its last dimension."""
  rank = array_ops.rank(logits)
  last_dim_size = array_ops.slice(
      array_ops.shape(logits), [math_ops.subtract(rank, 1)], [1])
  output = array_ops.reshape(logits, array_ops.concat([[-1], last_dim_size], 0))

  # Set output shape if known.
  shape = logits.get_shape()
  if shape is not None and shape.dims is not None:
    shape = shape.as_list()
    product = 1
    product_valid = True
    for d in shape[:-1]:
      if d is None:
        product_valid = False
        break
      else:
        product *= d
    if product_valid:
      output_shape = [product, shape[-1]]
      output.set_shape(output_shape)

  return output 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:26,代码来源:nn_ops.py

示例3: _ReductionDims

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _ReductionDims(x, axis, reduction_indices):
  """Returns range(0, rank(x)) if reduction_indices is None."""
  # TODO(aselle): Remove this after deprecation
  if reduction_indices is not None:
    if axis is not None:
      raise ValueError("Can't specify both axis' and 'reduction_indices'.")
    axis = reduction_indices
  if axis is not None:
    return axis
  else:
    # Fast path: avoid creating Rank and Range ops if ndims is known.
    if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None:
      return constant_op.constant(
          np.arange(x.get_shape().ndims), dtype=dtypes.int32)
    if (isinstance(x, sparse_tensor.SparseTensor) and
        x.dense_shape.get_shape().is_fully_defined()):
      rank = x.dense_shape.get_shape()[0].value  # sparse.dense_shape is 1-D.
      return constant_op.constant(np.arange(rank), dtype=dtypes.int32)

    # Otherwise, we rely on Range and Rank to do the right thing at run-time.
    return range(0, array_ops.rank(x)) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:math_ops.py

示例4: _SliceGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _SliceGrad(op, grad):
  """Gradient for Slice op."""
  # Create an Nx2 padding where the first column represents how many
  # zeros are to be prepended for each dimension, and the second
  # column indicates how many zeros are appended.
  #
  # The number of zeros to append is the shape of the input
  # elementwise-subtracted by both the begin vector and sizes vector.
  #
  # Some more reshaping is needed to assemble this tensor with the
  # right dimensions.
  input_vec = op.inputs[0]
  begin_vec = op.inputs[1]
  input_rank = array_ops.rank(input_vec)
  slice_size = array_ops.shape(op.outputs[0])

  shape = array_ops.stack([input_rank, 1])
  before_pad = array_ops.reshape(begin_vec, shape)
  after_pad = array_ops.reshape(
      array_ops.shape(input_vec) - slice_size - begin_vec, shape)
  paddings = array_ops.concat([before_pad, after_pad], 1)
  return array_ops.pad(grad, paddings), None, None 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:24,代码来源:array_grad.py

示例5: _MatrixSetDiagGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _MatrixSetDiagGrad(op, grad):
  """Gradient for MatrixSetDiag."""
  input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
  diag_shape = op.inputs[1].get_shape()
  batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
  matrix_shape = input_shape[-2:]
  if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
    diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
  else:
    with ops.colocate_with(grad):
      grad_shape = array_ops.shape(grad)
      grad_rank = array_ops.rank(grad)
      batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
      matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
      min_dim = math_ops.reduce_min(matrix_shape)
      diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
  grad_input = array_ops.matrix_set_diag(
      grad, array_ops.zeros(
          diag_shape, dtype=grad.dtype))
  grad_diag = array_ops.matrix_diag_part(grad)
  return (grad_input, grad_diag) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:array_grad.py

示例6: _event_dims_tensor

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _event_dims_tensor(self, sample):
    """Return a 1D `int32` tensor: `range(rank(sample))[-event_ndims:]`."""
    if self.event_ndims is None:
      raise ValueError("Jacobian cannot be computed with unknown event_ndims")
    static_event_ndims = tensor_util.constant_value(self.event_ndims)
    static_rank = sample.get_shape().ndims
    if static_event_ndims is not None and static_rank is not None:
      return ops.convert_to_tensor(
          static_rank + np.arange(-static_event_ndims, 0).astype(np.int32))

    if static_event_ndims is not None:
      event_range = np.arange(-static_event_ndims, 0).astype(np.int32)
    else:
      event_range = math_ops.range(-self.event_ndims, 0, dtype=dtypes.int32)

    if static_rank is not None:
      return event_range + static_rank
    else:
      return event_range + array_ops.rank(sample) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:21,代码来源:bijector_impl.py

示例7: _SumGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _SumGrad(op, grad):
  """Gradient for Sum."""
  # Fast path for when reducing to a scalar and ndims is known: adds only
  # Reshape and Tile ops (and possibly a Shape).
  if (op.inputs[0].get_shape().ndims is not None and
      op.inputs[1].op.type == "Const"):
    rank = op.inputs[0].get_shape().ndims
    axes = tensor_util.MakeNdarray(op.inputs[1].op.get_attr("value"))
    if np.array_equal(axes, np.arange(rank)):  # Reduce all dims.
      grad = array_ops.reshape(grad, [1] * rank)
      # If shape is not fully defined (but rank is), we use Shape.
      if op.inputs[0].get_shape().is_fully_defined():
        input_shape = op.inputs[0].get_shape().as_list()
      else:
        input_shape = array_ops.shape(op.inputs[0])
      return [array_ops.tile(grad, input_shape), None]

  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)
  return [array_ops.tile(grad, tile_scaling), None] 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:24,代码来源:math_grad.py

示例8: _BiasAddGradV1

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _BiasAddGradV1(unused_bias_op, received_grad):
  """Return the gradients for the 2 inputs of bias_op.

  The first input of unused_bias_op is the tensor t, and its gradient is
  just the gradient the unused_bias_op received.

  The second input of unused_bias_op is the bias vector which has one fewer
  dimension than "received_grad" (the batch dimension.)  Its gradient is the
  received gradient Summed on the batch dimension, which is the first dimension.

  Args:
    unused_bias_op: The BiasOp for which we need to generate gradients.
    received_grad: Tensor.  The gradients passed to the BiasOp.

  Returns:
    Two tensors, the first one for the "tensor" input of the BiasOp,
    the second one for the "bias" input of the BiasOp.
  """
  reduction_dim_tensor = math_ops.range(array_ops.rank(received_grad) - 1)
  return (received_grad, math_ops.reduce_sum(received_grad,
                                             reduction_dim_tensor)) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:nn_grad.py

示例9: _transpose_batch_time

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _transpose_batch_time(x):
  """Transpose the batch and time dimensions of a Tensor.

  Retains as much of the static shape information as possible.

  Args:
    x: A tensor of rank 2 or higher.

  Returns:
    x transposed along the first two dimensions.

  Raises:
    ValueError: if `x` is rank 1 or lower.
  """
  x_static_shape = x.get_shape()
  if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
    raise ValueError(
        "Expected input tensor %s to have rank at least 2, but saw shape: %s" %
        (x, x_static_shape))
  x_rank = array_ops.rank(x)
  x_t = array_ops.transpose(
      x, array_ops.concat(
          ([1, 0], math_ops.range(2, x_rank)), axis=0))
  x_t.set_shape(
      tensor_shape.TensorShape([
          x_static_shape[1].value, x_static_shape[0].value
      ]).concatenate(x_static_shape[2:]))
  return x_t 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:30,代码来源:rnn.py

示例10: top_k

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def top_k(input, k=1, sorted=True, name=None):
  """Finds values and indices of the `k` largest entries for the last dimension.

  If the input is a vector (rank-1), finds the `k` largest entries in the vector
  and outputs their values and indices as vectors.  Thus `values[j]` is the
  `j`-th largest entry in `input`, and its index is `indices[j]`.

  For matrices (resp. higher rank input), computes the top `k` entries in each
  row (resp. vector along the last dimension).  Thus,

      values.shape = indices.shape = input.shape[:-1] + [k]

  If two elements are equal, the lower-index element appears first.

  Args:
    input: 1-D or higher `Tensor` with last dimension at least `k`.
    k: 0-D `int32` `Tensor`.  Number of top elements to look for along the last
      dimension (along each row for matrices).
    sorted: If true the resulting `k` elements will be sorted by the values in
      descending order.
    name: Optional name for the operation.

  Returns:
    values: The `k` largest elements along each last dimensional slice.
    indices: The indices of `values` within the last dimension of `input`.
  """
  return gen_nn_ops._top_kv2(input, k=k, sorted=sorted, name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:29,代码来源:nn_ops.py

示例11: clip_by_average_norm

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def clip_by_average_norm(t, clip_norm, name=None):
  """Clips tensor values to a maximum average L2-norm.

  Given a tensor `t`, and a maximum clip value `clip_norm`, this operation
  normalizes `t` so that its average L2-norm is less than or equal to
  `clip_norm`. Specifically, if the average L2-norm is already less than or
  equal to `clip_norm`, then `t` is not modified. If the average L2-norm is
  greater than `clip_norm`, then this operation returns a tensor of the same
  type and shape as `t` with its values set to:

  `t * clip_norm / l2norm_avg(t)`

  In this case, the average L2-norm of the output tensor is `clip_norm`.

  This operation is typically used to clip gradients before applying them with
  an optimizer.

  Args:
    t: A `Tensor`.
    clip_norm: A 0-D (scalar) `Tensor` > 0. A maximum clipping value.
    name: A name for the operation (optional).

  Returns:
    A clipped `Tensor`.
  """
  with ops.name_scope(name, "clip_by_average_norm", [t, clip_norm]) as name:
    t = ops.convert_to_tensor(t, name="t")

    # Calculate L2-norm per element, clip elements by ratio of clip_norm to
    # L2-norm per element
    n_element = math_ops.cast(array_ops.size(t), dtypes.float32)
    l2norm_inv = math_ops.rsqrt(
        math_ops.reduce_sum(t * t, math_ops.range(array_ops.rank(t))))
    tclip = array_ops.identity(
        t * clip_norm * math_ops.minimum(
            l2norm_inv * n_element, constant_op.constant(1.0) / clip_norm),
        name=name)

  return tclip 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:41,代码来源:clip_ops.py

示例12: serialize_many_sparse

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def serialize_many_sparse(sp_input, name=None):
  """Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` string `Tensor`.

  The `SparseTensor` must have rank `R` greater than 1, and the first dimension
  is treated as the minibatch dimension.  Elements of the `SparseTensor`
  must be sorted in increasing order of this first dimension.  The serialized
  `SparseTensor` objects going into each row of the output `Tensor` will have
  rank `R-1`.

  The minibatch size `N` is extracted from `sparse_shape[0]`.

  Args:
    sp_input: The input rank `R` `SparseTensor`.
    name: A name prefix for the returned tensors (optional).

  Returns:
    A string matrix (2-D `Tensor`) with `N` rows and `3` columns.
    Each column represents serialized `SparseTensor`'s indices, values, and
    shape (respectively).

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  return gen_sparse_ops._serialize_many_sparse(
      sp_input.indices, sp_input.values, sp_input.dense_shape, name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:29,代码来源:sparse_ops.py

示例13: _add_many_sparse_to_tensors_map

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def _add_many_sparse_to_tensors_map(sp_input, container=None,
                                    shared_name=None, name=None):
  """Add a minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles.

  The `SparseTensor` must have rank `R` greater than 1, and the first dimension
  is treated as the minibatch dimension.  Elements of the `SparseTensor`
  must be sorted in increasing order of this first dimension.  The serialized
  `SparseTensor` objects going into each row of the output `Tensor` will have
  rank `R-1`.

  The minibatch size `N` is extracted from `sparse_shape[0]`.

  Args:
    sp_input: The input rank `R` `SparseTensor`.
    container: The container for the underlying `SparseTensorsMap` (optional).
    shared_name: The shared name for the underlying `SparseTensorsMap`
      (optional, defaults to the name of the newly created op).
    name: A name prefix for the returned tensors (optional).

  Returns:
    A string matrix (2-D `Tensor`) with `N` rows and `1` column.
    Each row represents a unique handle to a `SparseTensor` stored by
    the `SparseTensorMap` underlying this op.

  Raises:
    TypeError: If `sp_input` is not a `SparseTensor`.
  """
  sp_input = _convert_to_sparse_tensor(sp_input)

  return gen_sparse_ops._add_many_sparse_to_tensors_map(
      sp_input.indices, sp_input.values, sp_input.dense_shape,
      container=container, shared_name=shared_name, name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:34,代码来源:sparse_ops.py

示例14: reduce_prod

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def reduce_prod(input_tensor,
                axis=None,
                keep_dims=False,
                name=None,
                reduction_indices=None):
  """Computes the product of elements across dimensions of a tensor.

  Reduces `input_tensor` along the dimensions given in `axis`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `axis`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `axis` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  Args:
    input_tensor: The tensor to reduce. Should have numeric type.
    axis: The dimensions to reduce. If `None` (the default),
      reduces all dimensions.
    keep_dims: If true, retains reduced dimensions with length 1.
    name: A name for the operation (optional).
    reduction_indices: The old (deprecated) name for axis.

  Returns:
    The reduced tensor.

  @compatibility(numpy)
  Equivalent to np.prod
  @end_compatibility
  """
  return gen_math_ops._prod(
      input_tensor,
      _ReductionDims(input_tensor, axis, reduction_indices),
      keep_dims,
      name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:37,代码来源:math_ops.py

示例15: reduce_min

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import rank [as 别名]
def reduce_min(input_tensor,
               axis=None,
               keep_dims=False,
               name=None,
               reduction_indices=None):
  """Computes the minimum of elements across dimensions of a tensor.

  Reduces `input_tensor` along the dimensions given in `axis`.
  Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
  entry in `axis`. If `keep_dims` is true, the reduced dimensions
  are retained with length 1.

  If `axis` has no entries, all dimensions are reduced, and a
  tensor with a single element is returned.

  Args:
    input_tensor: The tensor to reduce. Should have numeric type.
    axis: The dimensions to reduce. If `None` (the default),
      reduces all dimensions.
    keep_dims: If true, retains reduced dimensions with length 1.
    name: A name for the operation (optional).
    reduction_indices: The old (deprecated) name for axis.

  Returns:
    The reduced tensor.

  @compatibility(numpy)
  Equivalent to np.min
  @end_compatibility
  """
  return gen_math_ops._min(
      input_tensor,
      _ReductionDims(input_tensor, axis, reduction_indices),
      keep_dims,
      name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:37,代码来源:math_ops.py


注:本文中的tensorflow.python.ops.array_ops.rank方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。