本文整理汇总了Python中tensorflow.python.ops.array_ops.matrix_diag_part方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.matrix_diag_part方法的具体用法?Python array_ops.matrix_diag_part怎么用?Python array_ops.matrix_diag_part使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.matrix_diag_part方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _MatrixSetDiagGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _MatrixSetDiagGrad(op, grad):
"""Gradient for MatrixSetDiag."""
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例2: _check_chol
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _check_chol(self, chol):
"""Verify that `chol` is proper."""
chol = ops.convert_to_tensor(chol, name="chol")
if not self.verify_pd:
return chol
shape = array_ops.shape(chol)
rank = array_ops.rank(chol)
is_matrix = check_ops.assert_rank_at_least(chol, 2)
is_square = check_ops.assert_equal(
array_ops.gather(shape, rank - 2), array_ops.gather(shape, rank - 1))
deps = [is_matrix, is_square]
diag = array_ops.matrix_diag_part(chol)
deps.append(check_ops.assert_positive(diag))
return control_flow_ops.with_dependencies(deps, chol)
示例3: sqrt_log_abs_det
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def sqrt_log_abs_det(self):
"""Computes (log o abs o det)(X) for matrix X.
Doesn't actually do the sqrt! Named as such to agree with API.
To compute det(M + V D V.T), we use the matrix determinant lemma:
det(Tril + V D V.T) = det(C) det(D) det(M)
where C is defined as in `_inverse`, ie,
C = inv(D) + V.T inv(M) V.
See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma
Returns:
log_abs_det: `Tensor`.
"""
log_det_c = math_ops.log(math_ops.abs(
linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
# Reduction is ok because we always prepad inputs to this class.
log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
array_ops.matrix_diag_part(self._m))), axis=[-1])
return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m
示例4: test_diag_part
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def test_diag_part(self):
self._skip_if_tests_to_skip_contains("diag_part")
for use_placeholder in False, True:
for shape in self._shapes_to_test:
for dtype in self._dtypes_to_test:
with self.test_session(graph=ops.Graph()) as sess:
sess.graph.seed = random_seed.DEFAULT_GRAPH_SEED
operator, mat, feed_dict = self._operator_and_mat_and_feed_dict(
shape, dtype, use_placeholder=use_placeholder)
op_diag_part = operator.diag_part()
mat_diag_part = array_ops.matrix_diag_part(mat)
if not use_placeholder:
self.assertAllEqual(
mat_diag_part.get_shape(), op_diag_part.get_shape())
op_diag_part_, mat_diag_part_ = sess.run(
[op_diag_part, mat_diag_part], feed_dict=feed_dict)
self.assertAC(op_diag_part_, mat_diag_part_)
示例5: add_to_tensor
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def add_to_tensor(self, mat, name="add_to_tensor"):
"""Add matrix represented by this operator to `mat`. Equiv to `I + mat`.
Args:
mat: `Tensor` with same `dtype` and shape broadcastable to `self`.
name: A name to give this `Op`.
Returns:
A `Tensor` with broadcast shape and same `dtype` as `self`.
"""
with self._name_scope(name, values=[mat]):
# Shape [B1,...,Bb, 1]
multiplier_vector = array_ops.expand_dims(self.multiplier, -1)
# Shape [C1,...,Cc, M, M]
mat = ops.convert_to_tensor(mat, name="mat")
# Shape [C1,...,Cc, M]
mat_diag = array_ops.matrix_diag_part(mat)
# multiplier_vector broadcasts here.
new_diag = multiplier_vector + mat_diag
return array_ops.matrix_set_diag(mat, new_diag)
示例6: _log_abs_determinant
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _log_abs_determinant(self):
# Recall
# det(L + UDV^H) = det(D^{-1} + V^H L^{-1} U) det(D) det(L)
# = det(C) det(D) det(L)
log_abs_det_d = self.diag_operator.log_abs_determinant()
log_abs_det_l = self.base_operator.log_abs_determinant()
if self._use_cholesky:
chol_cap_diag = array_ops.matrix_diag_part(self._chol_capacitance)
log_abs_det_c = 2 * math_ops.reduce_sum(
math_ops.log(chol_cap_diag), reduction_indices=[-1])
else:
det_c = linalg_ops.matrix_determinant(self._capacitance)
log_abs_det_c = math_ops.log(math_ops.abs(det_c))
return log_abs_det_c + log_abs_det_d + log_abs_det_l
示例7: _MatrixSetDiagGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _MatrixSetDiagGrad(op, grad):
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例8: _define_full_covariance_probs
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _define_full_covariance_probs(self, shard_id, shard):
"""Defines the full covariance probabilties per example in a class.
Updates a matrix with dimension num_examples X num_classes.
Args:
shard_id: id of the current shard.
shard: current data shard, 1 X num_examples X dimensions.
"""
diff = shard - self._means
cholesky = linalg_ops.cholesky(self._covs + self._min_var)
log_det_covs = 2.0 * math_ops.reduce_sum(
math_ops.log(array_ops.matrix_diag_part(cholesky)), 1)
x_mu_cov = math_ops.square(
linalg_ops.matrix_triangular_solve(
cholesky, array_ops.transpose(
diff, perm=[0, 2, 1]), lower=True))
diag_m = array_ops.transpose(math_ops.reduce_sum(x_mu_cov, 1))
self._probs[shard_id] = -0.5 * (diag_m + math_ops.to_float(self._dimensions)
* math_ops.log(2 * np.pi) + log_det_covs)
示例9: sqrt_log_abs_det
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def sqrt_log_abs_det(self):
"""Computes (log o abs o det)(X) for matrix X.
Doesn't actually do the sqrt! Named as such to agree with API.
To compute det(M + V D V.T), we use the matrix determinant lemma:
det(Tril + V D V.T) = det(C) det(D) det(M)
where C is defined as in `_inverse`, ie,
C = inv(D) + V.T inv(M) V.
See: https://en.wikipedia.org/wiki/Matrix_determinant_lemma
Returns:
log_abs_det: `Tensor`.
"""
log_det_c = math_ops.log(math_ops.abs(
linalg_ops.matrix_determinant(self._woodbury_sandwiched_term())))
# Reduction is ok because we always prepad inputs to this class.
log_det_m = math_ops.reduce_sum(math_ops.log(math_ops.abs(
array_ops.matrix_diag_part(self._m))), reduction_indices=[-1])
return log_det_c + 2. * self._d.sqrt_log_abs_det() + log_det_m
示例10: _pairwise_squared_distance_matrix
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _pairwise_squared_distance_matrix(x):
"""Pairwise squared distance among a (batch) matrix's rows (2nd dim).
This saves a bit of computation vs. using _cross_squared_distance_matrix(x,x)
Args:
x: `[batch_size, n, d]` float `Tensor`
Returns:
squared_dists: `[batch_size, n, n]` float `Tensor`, where
squared_dists[b,i,j] = ||x[b,i,:] - x[b,j,:]||^2
"""
x_x_transpose = math_ops.matmul(x, x, adjoint_b=True)
x_norm_squared = array_ops.matrix_diag_part(x_x_transpose)
x_norm_squared_tile = array_ops.expand_dims(x_norm_squared, 2)
# squared_dists[b,i,j] = ||x_bi - x_bj||^2 = x_bi'x_bi- 2x_bi'x_bj + x_bj'x_bj
squared_dists = x_norm_squared_tile - 2 * x_x_transpose + array_ops.transpose(
x_norm_squared_tile, [0, 2, 1])
return squared_dists
示例11: _MatrixSetDiagGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _MatrixSetDiagGrad(op, grad):
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat(0, [batch_shape, [min_dim]])
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例12: trace
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def trace(x, name=None):
"""Compute the trace of a tensor `x`.
`trace(x)` returns the sum along the main diagonal of each inner-most matrix
in x. If x is of rank `k` with shape `[I, J, K, ..., L, M, N]`, then output
is a tensor of rank `k-2` with dimensions `[I, J, K, ..., L]` where
`output[i, j, k, ..., l] = trace(x[i, j, i, ..., l, :, :])`
For example:
```python
# 'x' is [[1, 2],
# [3, 4]]
tf.trace(x) ==> 5
# 'x' is [[1,2,3],
# [4,5,6],
# [7,8,9]]
tf.trace(x) ==> 15
# 'x' is [[[1,2,3],
# [4,5,6],
# [7,8,9]],
# [[-1,-2,-3],
# [-4,-5,-6],
# [-7,-8,-9]]]
tf.trace(x) ==> [15,-15]
```
Args:
x: tensor.
name: A name for the operation (optional).
Returns:
The trace of input tensor.
"""
with ops.name_scope(name, "Trace", [x]) as name:
x = ops.convert_to_tensor(x, name="x")
return reduce_sum(array_ops.matrix_diag_part(x), [-1], name=name)
示例13: _MatrixDiagGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _MatrixDiagGrad(_, grad):
return array_ops.matrix_diag_part(grad)
示例14: _SelfAdjointEigV2Grad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
"""Gradient for SelfAdjointEigV2."""
e = op.outputs[0]
v = op.outputs[1]
# a = op.inputs[0], which satisfies
# a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
with ops.control_dependencies([grad_e.op, grad_v.op]):
if grad_v is not None:
# Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
# Notice that because of the term involving f, the gradient becomes
# infinite (or NaN in practice) when eigenvalues are not unique.
# Mathematically this should not be surprising, since for (k-fold)
# degenerate eigenvalues, the corresponding eigenvectors are only defined
# up to arbitrary rotation in a (k-dimensional) subspace.
f = array_ops.matrix_set_diag(
math_ops.reciprocal(
array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
array_ops.zeros_like(e))
grad_a = math_ops.matmul(
v,
math_ops.matmul(
array_ops.matrix_diag(grad_e) + f * math_ops.matmul(
v, grad_v, adjoint_a=True),
v,
adjoint_b=True))
else:
grad_a = math_ops.matmul(
v, math_ops.matmul(
array_ops.matrix_diag(grad_e), v, adjoint_b=True))
# The forward op only depends on the lower triangular part of a, so here we
# symmetrize and take the lower triangle
grad_a = array_ops.matrix_band_part(
grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
grad_a = array_ops.matrix_set_diag(grad_a,
0.5 * array_ops.matrix_diag_part(grad_a))
return grad_a
示例15: _add_to_tensor
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag_part [as 别名]
def _add_to_tensor(self, mat):
# Add to a tensor in O(k) time!
mat_diag = array_ops.matrix_diag_part(mat)
new_diag = self._scale + mat_diag
return array_ops.matrix_set_diag(mat, new_diag)