本文整理汇总了Python中tensorflow.python.ops.array_ops.matrix_band_part方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.matrix_band_part方法的具体用法?Python array_ops.matrix_band_part怎么用?Python array_ops.matrix_band_part使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.matrix_band_part方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _MatrixTriangularSolveGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _MatrixTriangularSolveGrad(op, grad):
"""Gradient for MatrixTriangularSolve."""
a = op.inputs[0]
adjoint_a = op.get_attr("adjoint")
lower_a = op.get_attr("lower")
c = op.outputs[0]
grad_b = linalg_ops.matrix_triangular_solve(
a, grad, lower=lower_a, adjoint=not adjoint_a)
if adjoint_a:
grad_a = -math_ops.matmul(c, grad_b, adjoint_b=True)
else:
grad_a = -math_ops.matmul(grad_b, c, adjoint_b=True)
if lower_a:
grad_a = array_ops.matrix_band_part(grad_a, -1, 0)
else:
grad_a = array_ops.matrix_band_part(grad_a, 0, -1)
return (grad_a, grad_b)
示例2: _MatrixTriangularSolveGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _MatrixTriangularSolveGrad(op, grad):
"""Gradient for MatrixTriangularSolve."""
a = op.inputs[0]
adjoint_a = op.get_attr("adjoint")
lower_a = op.get_attr("lower")
c = op.outputs[0]
grad_b = linalg_ops.matrix_triangular_solve(
a, grad, lower=lower_a, adjoint=not adjoint_a)
if adjoint_a:
grad_a = -math_ops.batch_matmul(c, grad_b, adj_y=True)
else:
grad_a = -math_ops.batch_matmul(grad_b, c, adj_y=True)
if lower_a:
grad_a = array_ops.matrix_band_part(grad_a, -1, 0)
else:
grad_a = array_ops.matrix_band_part(grad_a, 0, -1)
return (grad_a, grad_b)
示例3: _CholeskyGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _CholeskyGrad(op, grad):
"""Gradient for Cholesky."""
# Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1}
l = op.outputs[0]
num_rows = array_ops.shape(l)[-1]
batch_shape = array_ops.shape(l)[:-2]
l_inverse = linalg_ops.matrix_triangular_solve(l,
linalg_ops.eye(
num_rows,
batch_shape=batch_shape,
dtype=l.dtype))
middle = math_ops.matmul(l, grad, adjoint_a=True)
middle = array_ops.matrix_set_diag(middle,
0.5 * array_ops.matrix_diag_part(middle))
middle = array_ops.matrix_band_part(middle, -1, 0)
grad_a = math_ops.matmul(
math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse)
grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a))
return grad_a * 0.5
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:25,代码来源:linalg_grad.py
示例4: _MatrixBandPartGrad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _MatrixBandPartGrad(op, grad):
num_lower = op.inputs[1]
num_upper = op.inputs[2]
return (array_ops.matrix_band_part(grad, num_lower, num_upper), None, None)
# Edit Distance has no gradient (but can be used to eval seq2seq or CTC).
示例5: _SelfAdjointEigV2Grad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
"""Gradient for SelfAdjointEigV2."""
e = op.outputs[0]
v = op.outputs[1]
# a = op.inputs[0], which satisfies
# a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
with ops.control_dependencies([grad_e.op, grad_v.op]):
if grad_v is not None:
# Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
# Notice that because of the term involving f, the gradient becomes
# infinite (or NaN in practice) when eigenvalues are not unique.
# Mathematically this should not be surprising, since for (k-fold)
# degenerate eigenvalues, the corresponding eigenvectors are only defined
# up to arbitrary rotation in a (k-dimensional) subspace.
f = array_ops.matrix_set_diag(
math_ops.reciprocal(
array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
array_ops.zeros_like(e))
grad_a = math_ops.matmul(
v,
math_ops.matmul(
array_ops.matrix_diag(grad_e) + f * math_ops.matmul(
v, grad_v, adjoint_a=True),
v,
adjoint_b=True))
else:
grad_a = math_ops.matmul(
v, math_ops.matmul(
array_ops.matrix_diag(grad_e), v, adjoint_b=True))
# The forward op only depends on the lower triangular part of a, so here we
# symmetrize and take the lower triangle
grad_a = array_ops.matrix_band_part(
grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
grad_a = array_ops.matrix_set_diag(grad_a,
0.5 * array_ops.matrix_diag_part(grad_a))
return grad_a
示例6: _matmul
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _matmul(self, x, transpose_x=False):
# tf.matmul is defined a * b.
chol = array_ops.matrix_band_part(self._chol, -1, 0)
chol_times_x = math_ops.matmul(
chol, x, transpose_a=True, transpose_b=transpose_x)
return math_ops.matmul(chol, chol_times_x)
示例7: _batch_matmul
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _batch_matmul(self, x, transpose_x=False):
# tf.matmul is defined x * y, so "y" is on the right, not "x".
chol = array_ops.matrix_band_part(self._chol, -1, 0)
chol_times_x = math_ops.matmul(
chol, x, adjoint_a=True, adjoint_b=transpose_x)
return math_ops.matmul(chol, chol_times_x)
示例8: _batch_sqrt_matmul
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _batch_sqrt_matmul(self, x, transpose_x=False):
chol = array_ops.matrix_band_part(self._chol, -1, 0)
# tf.batch_matmul is defined x * y, so "y" is on the right, not "x".
return math_ops.matmul(chol, x, adjoint_b=transpose_x)
示例9: _sqrt_to_dense
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _sqrt_to_dense(self):
chol = array_ops.matrix_band_part(self._chol, -1, 0)
return array_ops.identity(chol)
示例10: _to_dense
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _to_dense(self):
chol = array_ops.matrix_band_part(self._chol, -1, 0)
return math_ops.matmul(chol, chol, adjoint_b=True)
示例11: _preprocess_tril
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _preprocess_tril(self, identity_multiplier, diag, tril, event_ndims):
"""Helper to preprocess a lower triangular matrix."""
tril = array_ops.matrix_band_part(tril, -1, 0) # Zero out TriU.
if identity_multiplier is None and diag is None:
return self._process_matrix(tril, min_rank=2, event_ndims=event_ndims)
new_diag = array_ops.matrix_diag_part(tril)
if identity_multiplier is not None:
new_diag += identity_multiplier
if diag is not None:
new_diag += diag
tril = array_ops.matrix_set_diag(tril, new_diag)
return self._process_matrix(tril, min_rank=2, event_ndims=event_ndims)
示例12: _forward
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _forward(self, x):
if self._static_event_ndims == 0:
return math_ops.square(x)
if self.validate_args:
is_matrix = check_ops.assert_rank_at_least(x, 2)
shape = array_ops.shape(x)
is_square = check_ops.assert_equal(shape[-2], shape[-1])
x = control_flow_ops.with_dependencies([is_matrix, is_square], x)
# For safety, explicitly zero-out the upper triangular part.
x = array_ops.matrix_band_part(x, -1, 0)
return math_ops.matmul(x, x, adjoint_b=True)
示例13: random_tril_matrix
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def random_tril_matrix(shape,
dtype,
force_well_conditioned=False,
remove_upper=True):
"""[batch] lower triangular matrix.
Args:
shape: `TensorShape` or Python `list`. Shape of the returned matrix.
dtype: `TensorFlow` `dtype` or Python dtype
force_well_conditioned: Python `bool`. If `True`, returned matrix will have
eigenvalues with modulus in `(1, 2)`. Otherwise, eigenvalues are unit
normal random variables.
remove_upper: Python `bool`.
If `True`, zero out the strictly upper triangle.
If `False`, the lower triangle of returned matrix will have desired
properties, but will not not have the strictly upper triangle zero'd out.
Returns:
`Tensor` with desired shape and dtype.
"""
with ops.name_scope("random_tril_matrix"):
# Totally random matrix. Has no nice properties.
tril = random_normal(shape, dtype=dtype)
if remove_upper:
tril = array_ops.matrix_band_part(tril, -1, 0)
# Create a diagonal with entries having modulus in [1, 2].
if force_well_conditioned:
maxval = ops.convert_to_tensor(np.sqrt(2.), dtype=dtype.real_dtype)
diag = random_sign_uniform(
shape[:-1], dtype=dtype, minval=1., maxval=maxval)
tril = array_ops.matrix_set_diag(tril, diag)
return tril
示例14: _SelfAdjointEigV2Grad
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
"""Gradient for SelfAdjointEigV2."""
e = op.outputs[0]
v = op.outputs[1]
# a = op.inputs[0], which satisfies
# a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
with ops.control_dependencies([grad_e.op, grad_v.op]):
if grad_v is not None:
# Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
# Notice that because of the term involving f, the gradient becomes
# infinite (or NaN in practice) when eigenvalues are not unique.
# Mathematically this should not be surprising, since for (k-fold)
# degenerate eigenvalues, the corresponding eigenvectors are only defined
# up to arbitrary rotation in a (k-dimensional) subspace.
f = array_ops.matrix_set_diag(
math_ops.inv(
array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
array_ops.zeros_like(e))
grad_a = math_ops.batch_matmul(
v,
math_ops.batch_matmul(
array_ops.matrix_diag(grad_e) + f * math_ops.batch_matmul(
v, grad_v, adj_x=True),
v,
adj_y=True))
else:
grad_a = math_ops.batch_matmul(
v,
math_ops.batch_matmul(
array_ops.matrix_diag(grad_e), v, adj_y=True))
# The forward op only depends on the lower triangular part of a, so here we
# symmetrize and take the lower triangle
grad_a = array_ops.matrix_band_part(
grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
grad_a = array_ops.matrix_set_diag(grad_a,
0.5 * array_ops.matrix_diag_part(grad_a))
return grad_a
示例15: _batch_matmul
# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import matrix_band_part [as 别名]
def _batch_matmul(self, x, transpose_x=False):
# tf.batch_matmul is defined x * y, so "y" is on the right, not "x".
chol = array_ops.matrix_band_part(self._chol, -1, 0)
chol_times_x = math_ops.batch_matmul(
chol, x, adj_x=True, adj_y=transpose_x)
return math_ops.batch_matmul(chol, chol_times_x)