当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.fill方法代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.fill方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.fill方法的具体用法?Python array_ops.fill怎么用?Python array_ops.fill使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.fill方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _mode

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mode(self):
    mode = (self.concentration1 - 1.) / (self.total_concentration - 2.)
    if self.allow_nan_stats:
      nan = array_ops.fill(
          self.batch_shape_tensor(),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      is_defined = math_ops.logical_and(self.concentration1 > 1.,
                                        self.concentration0 > 1.)
      return array_ops.where(is_defined, mode, nan)
    return control_flow_ops.with_dependencies([
        check_ops.assert_less(
            array_ops.ones([], dtype=self.dtype),
            self.concentration1,
            message="Mode undefined for concentration1 <= 1."),
        check_ops.assert_less(
            array_ops.ones([], dtype=self.dtype),
            self.concentration0,
            message="Mode undefined for concentration0 <= 1.")
    ], mode) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:22,代码来源:beta.py

示例2: _mean

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mean(self):
    mean = self.loc * array_ops.ones(self.batch_shape_tensor(),
                                     dtype=self.dtype)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.greater(
              self.df,
              array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
          mean,
          array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              check_ops.assert_less(
                  array_ops.ones([], dtype=self.dtype),
                  self.df,
                  message="mean not defined for components of df <= 1"),
          ],
          mean) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:22,代码来源:student_t.py

示例3: _mode

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mode(self):
    k = math_ops.cast(self.event_shape_tensor()[0], self.dtype)
    mode = (self.concentration - 1.) / (
        self.total_concentration[..., array_ops.newaxis] - k)
    if self.allow_nan_stats:
      nan = array_ops.fill(
          array_ops.shape(mode),
          np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
          name="nan")
      return array_ops.where(
          math_ops.reduce_all(self.concentration > 1., axis=-1),
          mode, nan)
    return control_flow_ops.with_dependencies([
        check_ops.assert_less(
            array_ops.ones([], self.dtype),
            self.concentration,
            message="Mode undefined when any concentration <= 1"),
    ], mode) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:20,代码来源:dirichlet.py

示例4: _mode

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mode(self):
    mode = (self.a - 1.)/ (self.a_b_sum - 2.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.logical_and(
              math_ops.greater(self.a, 1.),
              math_ops.greater(self.b, 1.)),
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.a,
              message="Mode not defined for components of a <= 1."),
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.b,
              message="Mode not defined for components of b <= 1."),
      ], mode) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:21,代码来源:beta.py

示例5: _mean

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mean(self):
    mean = self.mu * array_ops.ones(self.batch_shape(), dtype=self.dtype)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.greater(
              self.df,
              array_ops.ones(self.batch_shape(), dtype=self.dtype)),
          mean,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              check_ops.assert_less(
                  array_ops.ones((), dtype=self.dtype),
                  self.df,
                  message="mean not defined for components of df <= 1"),
          ],
          mean) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:21,代码来源:student_t.py

示例6: _mode

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mode(self):
    mode = ((self.alpha - 1.) /
            (array_ops.expand_dims(self.alpha_sum, dim=-1) -
             math_ops.cast(self.event_shape()[0], self.dtype)))
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      shape = array_ops.concat((self.batch_shape(), self.event_shape()), 0)
      return array_ops.where(
          math_ops.greater(self.alpha, 1.),
          mode,
          array_ops.fill(shape, nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.alpha,
              message="mode not defined for components of alpha <= 1")
      ], mode) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:19,代码来源:dirichlet.py

示例7: reduced_shape

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def reduced_shape(input_shape, axes):
  """Helper function for reduction ops.

  Args:
    input_shape: 1-D Tensor, the shape of the Tensor being reduced.
    axes: 1-D Tensor, the reduction axes.
  Returns:
    A 1-D Tensor, the output shape as if keep_dims were set to True.
  """
  # Example:
  # cast needed for SparseTensor reductions
  input_shape = to_int32(input_shape)       # [2, 3, 5, 7]
  axes = to_int32(axes)                     # [1, 2]

  input_rank = array_ops.size(input_shape)  # 4
  axes = (axes + input_rank) % input_rank
  axes_shape = array_ops.shape(axes)        # [2]
  return gen_data_flow_ops.dynamic_stitch(  # [2, 1, 1, 7]
      [range(input_rank),                   # [0, 1, 2, 3]
       axes],                               # [1, 2]
      [input_shape,                         # [2, 3, 5, 7]
       array_ops.fill(axes_shape, 1)])      # [1, 1] 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:24,代码来源:math_ops.py

示例8: _mode

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mode(self):
    mode = (self.a - 1.)/ (self.a_b_sum - 2.)
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.logical_and(
              math_ops.greater(self.a, 1.),
              math_ops.greater(self.b, 1.)),
          mode,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.a,
              message="Mode not defined for components of a <= 1."),
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.b,
              message="Mode not defined for components of b <= 1."),
      ], mode) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:21,代码来源:beta.py

示例9: _variance

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _variance(self):
    var = (self._ones() *
           math_ops.square(self.sigma) * self.df / (self.df - 2))
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = math_ops.select(
        math_ops.greater(self.df, array_ops.fill(self.batch_shape(), 2.)),
        var,
        array_ops.fill(self.batch_shape(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return math_ops.select(
          math_ops.greater(self.df, self._ones()),
          result_where_defined,
          array_ops.fill(self.batch_shape(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.df,
              message="variance not defined for components of df <= 1"),
      ], result_where_defined) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:24,代码来源:student_t.py

示例10: _mode

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _mode(self):
    mode = ((self.alpha - 1.) /
            (array_ops.expand_dims(self.alpha_sum, dim=-1) -
             math_ops.cast(self.event_shape()[0], self.dtype)))
    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      shape = array_ops.concat(0, (self.batch_shape(), self.event_shape()))
      return math_ops.select(
          math_ops.greater(self.alpha, 1.),
          mode,
          array_ops.fill(shape, nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies([
          check_ops.assert_less(
              array_ops.ones((), dtype=self.dtype), self.alpha,
              message="mode not defined for components of alpha <= 1")
      ], mode) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:19,代码来源:dirichlet.py

示例11: pad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def pad(x, max_size, value=0.0):
  """Makes the first dimension of x to be at least max_size.

  Args:
    x: a 3-D tensor.
    max_size: an int32 or int64 tensor.
    value: the value that the new elements of x will have.

  Returns:
    The expanded tensor with shape
      [max(x.shape[0], max_size), x.shape[1], x.shape[2]].
  """

  fill = tf.fill(
      dims=[
          tf.maximum(max_size - tf.shape(x)[0], 0),
          tf.shape(x)[1],
          tf.shape(x)[2]
      ],
      value=value)
  return tf.concat([x, fill], axis=0) 
开发者ID:google,项目名称:active-qa,代码行数:23,代码来源:diverse_decoder_utils.py

示例12: _select_class_id

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _select_class_id(ids, selected_id):
  """Filter all but `selected_id` out of `ids`.

  Args:
    ids: `int64` `Tensor` or `SparseTensor` of IDs.
    selected_id: Int id to select.

  Returns:
    `SparseTensor` of same dimensions as `ids`. This contains only the entries
    equal to `selected_id`.
  """
  ids = sparse_tensor.convert_to_tensor_or_sparse_tensor(ids)
  if isinstance(ids, sparse_tensor.SparseTensor):
    return sparse_ops.sparse_retain(
        ids, math_ops.equal(ids.values, selected_id))

  # TODO(ptucker): Make this more efficient, maybe add a sparse version of
  # tf.equal and tf.reduce_any?

  # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1.
  ids_shape = array_ops.shape(ids, out_type=dtypes.int64)
  ids_last_dim = array_ops.size(ids_shape) - 1
  filled_selected_id_shape = math_ops.reduced_shape(
      ids_shape, array_ops.reshape(ids_last_dim, [1]))

  # Intersect `ids` with the selected ID.
  filled_selected_id = array_ops.fill(
      filled_selected_id_shape, math_ops.to_int64(selected_id))
  result = sets.set_intersection(filled_selected_id, ids)
  return sparse_tensor.SparseTensor(
      indices=result.indices, values=result.values, dense_shape=ids_shape) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:33,代码来源:metrics_impl.py

示例13: _num_relevant

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _num_relevant(labels, k):
  """Computes number of relevant values for each row in labels.

  For labels with shape [D1, ... DN, num_labels], this is the minimum of
  `num_labels` and `k`.

  Args:
    labels: `int64` `Tensor` or `SparseTensor` with shape
      [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of
      target classes for the associated prediction. Commonly, N=1 and `labels`
      has shape [batch_size, num_labels].
    k: Integer, k for @k metric.

  Returns:
    Integer `Tensor` of shape [D1, ... DN], where each value is the number of
    relevant values for that row.

  Raises:
    ValueError: if inputs have invalid dtypes or values.
  """
  if k < 1:
    raise ValueError('Invalid k=%s.' % k)
  with ops.name_scope(None, 'num_relevant', (labels,)) as scope:
    # For SparseTensor, calculate separate count for each row.
    labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
    if isinstance(labels, sparse_tensor.SparseTensor):
      return math_ops.minimum(sets.set_size(labels), k, name=scope)

    # For dense Tensor, calculate scalar count based on last dimension, and
    # tile across labels shape.
    labels_shape = array_ops.shape(labels)
    labels_size = labels_shape[-1]
    num_relevant_scalar = math_ops.minimum(labels_size, k)
    return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:36,代码来源:metrics_impl.py

示例14: reduced_shape

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def reduced_shape(input_shape, axes):
  """Helper function for reduction ops.

  Args:
    input_shape: 1-D Tensor, the shape of the Tensor being reduced.
    axes: 1-D Tensor, the reduction axes.
  Returns:
    A 1-D Tensor, the output shape as if keep_dims were set to True.
  """
  # Example:
  # cast needed for SparseTensor reductions
  input_shape = to_int32(input_shape)  # [2, 3, 5, 7]
  axes = to_int32(axes)  # [1, 2]

  input_rank = array_ops.size(input_shape)  # 4
  axes = (axes + input_rank) % input_rank
  axes_shape = array_ops.shape(axes)  # [2]
  return gen_data_flow_ops.dynamic_stitch(  # [2, 1, 1, 7]
      [
          range(input_rank),  # [0, 1, 2, 3]
          axes
      ],  # [1, 2]
      [
          input_shape,  # [2, 3, 5, 7]
          array_ops.fill(axes_shape, 1)
      ])  # [1, 1] 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:28,代码来源:math_ops.py

示例15: _variance

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import fill [as 别名]
def _variance(self):
    # We need to put the tf.where inside the outer tf.where to ensure we never
    # hit a NaN in the gradient.
    denom = array_ops.where(math_ops.greater(self.df, 2.),
                            self.df - 2.,
                            array_ops.ones_like(self.df))
    # Abs(scale) superfluous.
    var = (array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype) *
           math_ops.square(self.scale) * self.df / denom)
    # When 1 < df <= 2, variance is infinite.
    inf = np.array(np.inf, dtype=self.dtype.as_numpy_dtype())
    result_where_defined = array_ops.where(
        self.df > array_ops.fill(self.batch_shape_tensor(), 2.),
        var,
        array_ops.fill(self.batch_shape_tensor(), inf, name="inf"))

    if self.allow_nan_stats:
      nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
      return array_ops.where(
          math_ops.greater(
              self.df,
              array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
          result_where_defined,
          array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
    else:
      return control_flow_ops.with_dependencies(
          [
              check_ops.assert_less(
                  array_ops.ones([], dtype=self.dtype),
                  self.df,
                  message="variance not defined for components of df <= 1"),
          ],
          result_where_defined) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:35,代码来源:student_t.py


注:本文中的tensorflow.python.ops.array_ops.fill方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。