当前位置: 首页>>代码示例>>Python>>正文


Python array_ops.diag方法代码示例

本文整理汇总了Python中tensorflow.python.ops.array_ops.diag方法的典型用法代码示例。如果您正苦于以下问题:Python array_ops.diag方法的具体用法?Python array_ops.diag怎么用?Python array_ops.diag使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.diag方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _covariance

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def _covariance(x, diag):
  """Defines the covariance operation of a matrix.

  Args:
    x: a matrix Tensor. Dimension 0 should contain the number of examples.
    diag: if True, it computes the diagonal covariance.

  Returns:
    A Tensor representing the covariance of x. In the case of
  diagonal matrix just the diagonal is returned.
  """
  num_points = math_ops.to_float(array_ops.shape(x)[0])
  x -= math_ops.reduce_mean(x, 0, keep_dims=True)
  if diag:
    cov = math_ops.reduce_sum(
        math_ops.square(x), 0, keep_dims=True) / (num_points - 1)
  else:
    cov = math_ops.matmul(x, x, transpose_a=True) / (num_points - 1)
  return cov 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:21,代码来源:gmm_ops.py

示例2: _symmetric_matrix_square_root

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def _symmetric_matrix_square_root(mat, eps=1e-10):
  """Compute square root of a symmetric matrix.

  Note that this is different from an elementwise square root. We want to
  compute M' where M' = sqrt(mat) such that M' * M' = mat.

  Also note that this method **only** works for symmetric matrices.

  Args:
    mat: Matrix to take the square root of.
    eps: Small epsilon such that any element less than eps will not be square
      rooted to guard against numerical instability.

  Returns:
    Matrix square root of mat.
  """
  # Unlike numpy, tensorflow's return order is (s, u, v)
  s, u, v = linalg_ops.svd(mat)
  # sqrt is unstable around 0, just use 0 in such case
  si = array_ops.where(math_ops.less(s, eps), s, math_ops.sqrt(s))
  # Note that the v returned by Tensorflow is v = V
  # (when referencing the equation A = U S V^T)
  # This is unlike Numpy which returns v = V^T
  return math_ops.matmul(
      math_ops.matmul(u, array_ops.diag(si)), v, transpose_b=True) 
开发者ID:taki0112,项目名称:GAN_Metrics-Tensorflow,代码行数:27,代码来源:frechet_kernel_Inception_distance.py

示例3: _DiagPartGrad

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def _DiagPartGrad(_, grad):
  return array_ops.diag(grad) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:4,代码来源:array_grad.py

示例4: _define_distance_to_clusters

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def _define_distance_to_clusters(self, data):
    """Defines the Mahalanobis distance to the assigned Gaussian."""
    # TODO(xavigonzalvo): reuse (input - mean) * cov^-1 * (input -
    # mean) from log probability function.
    self._all_scores = []
    for shard in data:
      all_scores = []
      shard = array_ops.expand_dims(shard, 0)
      for c in xrange(self._num_classes):
        if self._covariance_type == FULL_COVARIANCE:
          cov = self._covs[c, :, :]
        elif self._covariance_type == DIAG_COVARIANCE:
          cov = array_ops.diag(self._covs[c, :])
        inverse = linalg_ops.matrix_inverse(cov + self._min_var)
        inv_cov = array_ops.tile(
            array_ops.expand_dims(inverse, 0),
            array_ops.stack([self._num_examples, 1, 1]))
        diff = array_ops.transpose(shard - self._means[c, :, :], perm=[1, 0, 2])
        m_left = math_ops.matmul(diff, inv_cov)
        all_scores.append(
            math_ops.sqrt(
                math_ops.matmul(
                    m_left, array_ops.transpose(
                        diff, perm=[0, 2, 1]))))
      self._all_scores.append(
          array_ops.reshape(
              array_ops.concat(all_scores, 1),
              array_ops.stack([self._num_examples, self._num_classes])))

    # Distance to the associated class.
    self._all_scores = array_ops.concat(self._all_scores, 0)
    assignments = array_ops.concat(self.assignments(), 0)
    rows = math_ops.to_int64(math_ops.range(0, self._num_examples))
    indices = array_ops.concat(
        [array_ops.expand_dims(rows, 1), array_ops.expand_dims(assignments, 1)],
        1)
    self._scores = array_ops.gather_nd(self._all_scores, indices) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:39,代码来源:gmm_ops.py

示例5: full_fisher_block

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def full_fisher_block(self):
        return array_ops.diag(array_ops.reshape(self._factor.get_cov(), (-1,))) 
开发者ID:gd-zhang,项目名称:noisy-K-FAC,代码行数:4,代码来源:fisher_blocks.py

示例6: inverse_initializer

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def inverse_initializer(shape, dtype, partition_info=None):  # pylint: disable=unused-argument
    return array_ops.diag(array_ops.ones(shape[0], dtype)) 
开发者ID:gd-zhang,项目名称:noisy-K-FAC,代码行数:4,代码来源:fisher_factors.py

示例7: covariance_initializer

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def covariance_initializer(shape, dtype, partition_info=None):  # pylint: disable=unused-argument
    if INIT_COVARIANCES_AT_ZERO:
        return array_ops.diag(array_ops.zeros(shape[0], dtype))
    return array_ops.diag(array_ops.ones(shape[0], dtype)) 
开发者ID:gd-zhang,项目名称:noisy-K-FAC,代码行数:6,代码来源:fisher_factors.py

示例8: __init__

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def __init__(self,
               data,
               num_classes,
               initial_means=None,
               params='wmc',
               covariance_type=FULL_COVARIANCE,
               random_seed=0):
    """Constructor.

    Args:
      data: a list of Tensors with data, each row is a new example.
      num_classes: number of clusters.
      initial_means: a Tensor with a matrix of means. If None, means are
        computed by sampling randomly.
      params: Controls which parameters are updated in the training
        process. Can contain any combination of "w" for weights, "m" for
        means, and "c" for covariances.
      covariance_type: one of "full", "diag".
      random_seed: Seed for PRNG used to initialize seeds.

    Raises:
      Exception if covariance type is unknown.
    """
    self._params = params
    self._random_seed = random_seed
    self._covariance_type = covariance_type
    if self._covariance_type not in [DIAG_COVARIANCE, FULL_COVARIANCE]:
      raise Exception(  # pylint: disable=g-doc-exception
          'programmer error: Invalid covariance type: %s' %
          self._covariance_type)
    # Create sharded variables for multiple shards. The following
    # lists are indexed by shard.
    # Probability per example in a class.
    num_shards = len(data)
    self._probs = [None] * num_shards
    # Prior probability.
    self._prior_probs = [None] * num_shards
    # Membership weights w_{ik} where "i" is the i-th example and "k"
    # is the k-th mixture.
    self._w = [None] * num_shards
    # Number of examples in a class.
    self._points_in_k = [None] * num_shards
    first_shard = data[0]
    self._dimensions = array_ops.shape(first_shard)[1]
    self._num_classes = num_classes
    # Small value to guarantee that covariances are invertible.
    self._min_var = array_ops.diag(
        array_ops.ones(array_ops.stack([self._dimensions]))) * 1e-3
    self._create_variables(data, initial_means)
    # Operations of partial statistics for the computation of the means.
    self._w_mul_x = []
    # Operations of partial statistics for the computation of the covariances.
    self._w_mul_x2 = []
    self._define_graph(data) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:56,代码来源:gmm_ops.py

示例9: gmm

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def gmm(inp,
        initial_clusters,
        num_clusters,
        random_seed,
        covariance_type=FULL_COVARIANCE,
        params='wmc'):
  """Creates the graph for Gaussian mixture model (GMM) clustering.

  Args:
    inp: An input tensor or list of input tensors
    initial_clusters: Specifies the clusters used during
      initialization. Can be a tensor or numpy array, or a function
      that generates the clusters. Can also be "random" to specify
      that clusters should be chosen randomly from input data. Note: type
      is diverse to be consistent with skflow.
    num_clusters: number of clusters.
    random_seed: Python integer. Seed for PRNG used to initialize centers.
    covariance_type: one of "diag", "full".
    params: Controls which parameters are updated in the training
      process. Can contain any combination of "w" for weights, "m" for
      means, and "c" for covars.

  Returns:
    Note: tuple of lists returned to be consistent with skflow
    A tuple consisting of:
    all_scores: A matrix (or list of matrices) of dimensions (num_input,
      num_clusters) where the value is the distance of an input vector and a
      cluster center.
    assignments: A vector (or list of vectors). Each element in the vector
      corresponds to an input row in 'inp' and specifies the cluster id
      corresponding to the input.
    scores: Similar to assignments but specifies the distance to the
      assigned cluster instead.
    training_op: an op that runs an iteration of training.
  """
  initial_means = None
  if initial_clusters != 'random' and not isinstance(initial_clusters,
                                                     ops.Tensor):
    initial_means = constant_op.constant(initial_clusters, dtype=dtypes.float32)

  # Implementation of GMM.
  inp = inp if isinstance(inp, list) else [inp]
  gmm_tool = GmmAlgorithm(inp, num_clusters, initial_means, params,
                          covariance_type, random_seed)
  training_ops = gmm_tool.training_ops()
  assignments = gmm_tool.assignments()
  all_scores, scores = gmm_tool.scores()
  return [all_scores], [assignments], [scores], control_flow_ops.group(
      *training_ops) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:51,代码来源:gmm_ops.py

示例10: pairwise_distance

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def pairwise_distance(feature, squared=False):
  """Computes the pairwise distance matrix with numerical stability.

  output[i, j] = || feature[i, :] - feature[j, :] ||_2

  Args:
    feature: 2-D Tensor of size [number of data, feature dimension].
    squared: Boolean, whether or not to square the pairwise distances.

  Returns:
    pairwise_distances: 2-D Tensor of size [number of data, number of data].
  """
  pairwise_distances_squared = math_ops.add(
      math_ops.reduce_sum(math_ops.square(feature), axis=[1], keepdims=True),
      math_ops.reduce_sum(
          math_ops.square(array_ops.transpose(feature)),
          axis=[0],
          keepdims=True)) - 2.0 * math_ops.matmul(feature,
                                                  array_ops.transpose(feature))

  # Deal with numerical inaccuracies. Set small negatives to zero.
  pairwise_distances_squared = math_ops.maximum(pairwise_distances_squared, 0.0)
  # Get the mask where the zero distances are at.
  error_mask = math_ops.less_equal(pairwise_distances_squared, 0.0)

  # Optionally take the sqrt.
  if squared:
    pairwise_distances = pairwise_distances_squared
  else:
    pairwise_distances = math_ops.sqrt(
        pairwise_distances_squared +
        math_ops.cast(error_mask, dtypes.float32) * 1e-16)

  # Undo conditionally adding 1e-16.
  pairwise_distances = math_ops.multiply(
      pairwise_distances,
      math_ops.cast(math_ops.logical_not(error_mask), dtypes.float32))

  num_data = array_ops.shape(feature)[0]
  # Explicitly set diagonals to zero.
  mask_offdiagonals = array_ops.ones_like(pairwise_distances) - array_ops.diag(
      array_ops.ones([num_data]))
  pairwise_distances = math_ops.multiply(pairwise_distances, mask_offdiagonals)
  return pairwise_distances 
开发者ID:google-research,项目名称:tf-slim,代码行数:46,代码来源:metric_learning.py

示例11: pairwise_distance

# 需要导入模块: from tensorflow.python.ops import array_ops [as 别名]
# 或者: from tensorflow.python.ops.array_ops import diag [as 别名]
def pairwise_distance(feature, squared=False):
  """Computes the pairwise distance matrix with numerical stability.

  output[i, j] = || feature[i, :] - feature[j, :] ||_2

  Args:
    feature: 2-D Tensor of size [number of data, feature dimension].
    squared: Boolean, whether or not to square the pairwise distances.

  Returns:
    pairwise_distances: 2-D Tensor of size [number of data, number of data].
  """
  pairwise_distances_squared = math_ops.add(
      math_ops.reduce_sum(
          math_ops.square(feature),
          axis=[1],
          keep_dims=True),
      math_ops.reduce_sum(
          math_ops.square(
              array_ops.transpose(feature)),
          axis=[0],
          keep_dims=True)) - 2.0 * math_ops.matmul(
              feature, array_ops.transpose(feature))

  # Deal with numerical inaccuracies. Set small negatives to zero.
  pairwise_distances_squared = math_ops.maximum(pairwise_distances_squared, 0.0)
  # Get the mask where the zero distances are at.
  error_mask = math_ops.less_equal(pairwise_distances_squared, 0.0)

  # Optionally take the sqrt.
  if squared:
    pairwise_distances = pairwise_distances_squared
  else:
    pairwise_distances = math_ops.sqrt(
        pairwise_distances_squared + math_ops.to_float(error_mask) * 1e-16)

  # Undo conditionally adding 1e-16.
  pairwise_distances = math_ops.multiply(
      pairwise_distances, math_ops.to_float(math_ops.logical_not(error_mask)))

  num_data = array_ops.shape(feature)[0]
  # Explicitly set diagonals to zero.
  mask_offdiagonals = array_ops.ones_like(pairwise_distances) - array_ops.diag(
      array_ops.ones([num_data]))
  pairwise_distances = math_ops.multiply(pairwise_distances, mask_offdiagonals)
  return pairwise_distances 
开发者ID:CongWeilin,项目名称:cluster-loss-tensorflow,代码行数:48,代码来源:metric_loss_ops.py


注:本文中的tensorflow.python.ops.array_ops.diag方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。