本文整理汇总了Python中tensorflow.python.layers.core.Dropout方法的典型用法代码示例。如果您正苦于以下问题:Python core.Dropout方法的具体用法?Python core.Dropout怎么用?Python core.Dropout使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.layers.core
的用法示例。
在下文中一共展示了core.Dropout方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dropout
# 需要导入模块: from tensorflow.python.layers import core [as 别名]
# 或者: from tensorflow.python.layers.core import Dropout [as 别名]
def dropout(inputs,
keep_prob=0.5,
noise_shape=None,
is_training=True,
outputs_collections=None,
scope=None,
seed=None):
"""Returns a dropout op applied to the input.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
Args:
inputs: The tensor to pass to the nn.dropout op.
keep_prob: A scalar `Tensor` with the same type as x. The probability that
each element is kept.
noise_shape: A 1-D `Tensor` of type `int32`, representing the shape for
randomly generated keep/drop flags.
is_training: A bool `Tensor` indicating whether or not the model is in
training mode. If so, dropout is applied and values scaled. Otherwise,
inputs is returned.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
seed: A Python integer. Used to create random seeds. See
`tf.compat.v1.set_random_seed` for behavior.
Returns:
A tensor representing the output of the operation.
"""
with variable_scope.variable_scope(
scope, 'Dropout', [inputs], custom_getter=_model_variable_getter) as sc:
inputs = ops.convert_to_tensor(inputs)
layer = core_layers.Dropout(
rate=1 - keep_prob,
noise_shape=noise_shape,
seed=seed,
name=sc.name,
_scope=sc)
outputs = layer.apply(inputs, training=is_training)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
示例2: __init__
# 需要导入模块: from tensorflow.python.layers import core [as 别名]
# 或者: from tensorflow.python.layers.core import Dropout [as 别名]
def __init__(self, rate, noise_shape=None, seed=None, **kwargs):
self.supports_masking = True
# Inheritance call order:
# 1) tf.layers.Dropout, 2) keras.layers.Layer, 3) tf.layers.Layer
super(Dropout, self).__init__(**kwargs)
示例3: call
# 需要导入模块: from tensorflow.python.layers import core [as 别名]
# 或者: from tensorflow.python.layers.core import Dropout [as 别名]
def call(self, inputs, training=None):
if training is None:
training = K.learning_phase()
output = super(Dropout, self).call(inputs, training=training)
if training is K.learning_phase():
output._uses_learning_phase = True # pylint: disable=protected-access
return output
示例4: get_config
# 需要导入模块: from tensorflow.python.layers import core [as 别名]
# 或者: from tensorflow.python.layers.core import Dropout [as 别名]
def get_config(self):
config = {'rate': self.rate}
base_config = super(Dropout, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例5: dropout
# 需要导入模块: from tensorflow.python.layers import core [as 别名]
# 或者: from tensorflow.python.layers.core import Dropout [as 别名]
def dropout(inputs,
keep_prob=0.5,
noise_shape=None,
is_training=True,
outputs_collections=None,
scope=None):
"""Returns a dropout op applied to the input.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
Args:
inputs: The tensor to pass to the nn.dropout op.
keep_prob: A scalar `Tensor` with the same type as x. The probability
that each element is kept.
noise_shape: A 1-D `Tensor` of type `int32`, representing the
shape for randomly generated keep/drop flags.
is_training: A bool `Tensor` indicating whether or not the model
is in training mode. If so, dropout is applied and values scaled.
Otherwise, inputs is returned.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
Returns:
A tensor representing the output of the operation.
"""
with variable_scope.variable_scope(
scope, 'Dropout', [inputs], custom_getter=_model_variable_getter) as sc:
inputs = ops.convert_to_tensor(inputs)
layer = core_layers.Dropout(rate=1 - keep_prob,
noise_shape=noise_shape,
name=sc.name,
_scope=sc)
outputs = layer.apply(inputs, training=is_training)
return utils.collect_named_outputs(
outputs_collections, sc.original_name_scope, outputs)
示例6: dropout
# 需要导入模块: from tensorflow.python.layers import core [as 别名]
# 或者: from tensorflow.python.layers.core import Dropout [as 别名]
def dropout(inputs,
keep_prob=0.5,
noise_shape=None,
is_training=True,
outputs_collections=None,
scope=None):
"""Returns a dropout op applied to the input.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
Args:
inputs: the tensor to pass to the nn.dropout op.
keep_prob: A scalar `Tensor` with the same type as x. The probability
that each element is kept.
noise_shape: A 1-D `Tensor` of type `int32`, representing the
shape for randomly generated keep/drop flags.
is_training: A bool `Tensor` indicating whether or not the model
is in training mode. If so, dropout is applied and values scaled.
Otherwise, inputs is returned.
outputs_collections: collection to add the outputs.
scope: Optional scope for name_scope.
Returns:
a tensor representing the output of the operation.
"""
with variable_scope.variable_scope(
scope, 'Dropout', [inputs], custom_getter=_model_variable_getter) as sc:
inputs = ops.convert_to_tensor(inputs)
layer = core_layers.Dropout(rate=1 - keep_prob,
noise_shape=noise_shape,
name=sc.name,
_scope=sc)
outputs = layer.apply(inputs, training=is_training)
return utils.collect_named_outputs(
outputs_collections, sc.original_name_scope, outputs)
示例7: __init__
# 需要导入模块: from tensorflow.python.layers import core [as 别名]
# 或者: from tensorflow.python.layers.core import Dropout [as 别名]
def __init__(self, rate, noise_shape=None, seed=None, **kwargs):
self.supports_masking = True
# Inheritance call order:
# 1) tf.layers.Dropout, 2) keras.layers.Layer, 3) tf.layers.Layer
super(Dropout, self).__init__(rate=rate,
noise_shape=noise_shape,
seed=seed,
**kwargs)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:10,代码来源:core.py