本文整理汇总了Python中tensorflow.python.keras.preprocessing.image.load_img方法的典型用法代码示例。如果您正苦于以下问题:Python image.load_img方法的具体用法?Python image.load_img怎么用?Python image.load_img使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.keras.preprocessing.image
的用法示例。
在下文中一共展示了image.load_img方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_inference
# 需要导入模块: from tensorflow.python.keras.preprocessing import image [as 别名]
# 或者: from tensorflow.python.keras.preprocessing.image import load_img [as 别名]
def run_inference():
model = ResNet50(input_shape=(224, 224, 3), num_classes=10)
model.load_weights(MODEL_PATH)
picture = os.path.join(execution_path, "Haitian-fireman.jpg")
image_to_predict = image.load_img(picture, target_size=(
224, 224))
image_to_predict = image.img_to_array(image_to_predict, data_format="channels_last")
image_to_predict = np.expand_dims(image_to_predict, axis=0)
image_to_predict = preprocess_input(image_to_predict)
prediction = model.predict(x=image_to_predict, steps=1)
predictiondata = decode_predictions(prediction, top=int(5), model_json=JSON_PATH)
for result in predictiondata:
print(str(result[0]), " : ", str(result[1] * 100))
# run_inference()
示例2: test
# 需要导入模块: from tensorflow.python.keras.preprocessing import image [as 别名]
# 或者: from tensorflow.python.keras.preprocessing.image import load_img [as 别名]
def test():
import os
import numpy as np
from PIL import Image
from tensorflow.python.keras.preprocessing.image import load_img
from models import Darknet19Encoder, Darknet19Decoder
inputShape = (256, 256, 3)
batchSize = 8
latentSize = 100
img = load_img(os.path.join(os.path.dirname(__file__), '..','images', 'img.jpg'), target_size=inputShape[:-1])
img.show()
img = np.array(img, dtype=np.float32) * (2/255) - 1
# print(np.min(img))
# print(np.max(img))
# print(np.mean(img))
img = np.array([img]*batchSize) # make fake batches to improve GPU utilization
# This is how you build the autoencoder
encoder = Darknet19Encoder(inputShape, latentSize=latentSize, latentConstraints='bvae', beta=69)
decoder = Darknet19Decoder(inputShape, latentSize=latentSize)
bvae = AutoEncoder(encoder, decoder)
bvae.ae.compile(optimizer='adam', loss='mean_absolute_error')
while True:
bvae.ae.fit(img, img,
epochs=100,
batch_size=batchSize)
# example retrieving the latent vector
latentVec = bvae.encoder.predict(img)[0]
print(latentVec)
pred = bvae.ae.predict(img) # get the reconstructed image
pred = np.uint8((pred + 1)* 255/2) # convert to regular image values
pred = Image.fromarray(pred[0])
pred.show() # display popup
示例3: preprocess_image
# 需要导入模块: from tensorflow.python.keras.preprocessing import image [as 别名]
# 或者: from tensorflow.python.keras.preprocessing.image import load_img [as 别名]
def preprocess_image(path):
'''Process an image to numpy array.
Args:
path: the path of the image.
Returns:
Numpy array of the image.
'''
img = process_image.load_img(path, target_size=(224, 224))
x = process_image.img_to_array(img)
# x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x
示例4: load_img
# 需要导入模块: from tensorflow.python.keras.preprocessing import image [as 别名]
# 或者: from tensorflow.python.keras.preprocessing.image import load_img [as 别名]
def load_img(in_dir):
pred_img = [f for f in os.listdir(in_dir) if os.path.isfile(os.path.join(in_dir, f))]
img_collection = []
for idx, img in enumerate(pred_img):
img = os.path.join(in_dir, img)
img_collection.append(image.load_img(img, target_size=(out_res, out_res)))
if (np.square(out_dim) > len(img_collection)):
raise ValueError("Cannot fit {} images in {}x{} grid".format(len(img_collection), out_dim, out_dim))
return img_collection
示例5: main
# 需要导入模块: from tensorflow.python.keras.preprocessing import image [as 别名]
# 或者: from tensorflow.python.keras.preprocessing.image import load_img [as 别名]
def main():
model = build_model()
img_collection = load_img(in_dir)
activations = get_activations(model, img_collection)
print("Generating 2D representation.")
X_2d = generate_tsne(activations)
print("Generating image grid.")
save_tsne_grid(img_collection, X_2d, out_res, out_dim)
示例6: _get_batches_of_transformed_samples
# 需要导入模块: from tensorflow.python.keras.preprocessing import image [as 别名]
# 或者: from tensorflow.python.keras.preprocessing.image import load_img [as 别名]
def _get_batches_of_transformed_samples(self, index_array):
batch_x = np.zeros(
(len(index_array),) + self.image_shape,
dtype=floatx())
grayscale = self.color_mode == 'grayscale'
# Build batch of image data
for i, j in enumerate(index_array):
fname = self.filenames[j]
img = load_img(
os.path.join(self.directory, fname),
grayscale=grayscale,
target_size=None,
interpolation=self.interpolation)
x = img_to_array(img, data_format=self.data_format)
# Pillow images should be closed after `load_img`, but not PIL images.
if hasattr(img, 'close'):
img.close()
x = self.image_data_generator.standardize(x)
batch_x[i] = x
# Optionally save augmented images to disk for debugging purposes
if self.save_to_dir:
for i, j in enumerate(index_array):
img = array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(
prefix=self.save_prefix,
index=j,
hash=np.random.randint(1e7),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
# Build batch of labels
if self.class_mode == 'input':
batch_y = batch_x.copy()
elif self.class_mode == 'sparse':
batch_y = self.classes[index_array]
elif self.class_mode == 'binary':
batch_y = self.classes[index_array].astype(floatx())
elif self.class_mode == 'categorical':
batch_y = np.zeros(
(len(batch_x), self.num_classes),
dtype=floatx())
for i, label in enumerate(self.classes[index_array]):
batch_y[i, label] = 1.
else:
return batch_x
return batch_x, batch_y