本文整理汇总了Python中tensorflow.python.keras.layers.add方法的典型用法代码示例。如果您正苦于以下问题:Python layers.add方法的具体用法?Python layers.add怎么用?Python layers.add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.keras.layers
的用法示例。
在下文中一共展示了layers.add方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: resnet_module
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import add [as 别名]
def resnet_module(input, channel_depth, strided_pool=False ):
residual_input = input
stride = 1
if(strided_pool):
stride = 2
residual_input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(residual_input)
residual_input = BatchNormalization()(residual_input)
input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=1, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(input)
input = BatchNormalization()(input)
input = add([input, residual_input])
input = Activation("relu")(input)
return input
示例2: resnet_first_block_first_module
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import add [as 别名]
def resnet_first_block_first_module(input, channel_depth):
residual_input = input
stride = 1
residual_input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(residual_input)
residual_input = BatchNormalization()(residual_input)
input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = add([input, residual_input])
input = Activation("relu")(input)
return input
示例3: _shortcut
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import add [as 别名]
def _shortcut(input, residual):
"""Adds a shortcut between input and residual block and merges them with "sum"
"""
# Expand channels of shortcut to match residual.
# Stride appropriately to match residual (width, height)
# Should be int if network architecture is correctly configured.
input_shape = K.int_shape(input)
residual_shape = K.int_shape(residual)
stride_width = int(round(input_shape[ROW_AXIS] / residual_shape[ROW_AXIS]))
stride_height = int(round(input_shape[COL_AXIS] / residual_shape[COL_AXIS]))
equal_channels = input_shape[CHANNEL_AXIS] == residual_shape[CHANNEL_AXIS]
shortcut = input
# 1 X 1 conv if shape is different. Else identity.
if stride_width > 1 or stride_height > 1 or not equal_channels:
shortcut = Conv2D(filters=residual_shape[CHANNEL_AXIS],
kernel_size=(1, 1),
strides=(stride_width, stride_height),
padding="valid",
kernel_initializer="he_normal",
kernel_regularizer=l2(0.0001))(input)
return add([shortcut, residual])
示例4: identity_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import add [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1),
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1),
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
示例5: identity_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import add [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
Args:
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
Returns:
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size, use_bias=False,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
示例6: identity_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import add [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size,
padding='same', use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
示例7: identity_building_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import add [as 别名]
def identity_building_block(input_tensor,
kernel_size,
filters,
stage,
block,
training=None):
"""The identity block is the block that has no conv layer at shortcut.
Arguments:
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: current block label, used for generating layer names
training: Only used if training keras model with Estimator. In other
scenarios it is handled automatically.
Returns:
Output tensor for the block.
"""
filters1, filters2 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, kernel_size,
padding='same', use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x, training=training)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size,
padding='same', use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x, training=training)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:53,代码来源:resnet_cifar_model.py