本文整理汇总了Python中tensorflow.python.keras.layers.Flatten方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Flatten方法的具体用法?Python layers.Flatten怎么用?Python layers.Flatten使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.keras.layers
的用法示例。
在下文中一共展示了layers.Flatten方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build_flatten
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def _build_flatten(data_format=None, **kwargs):
return layers.Flatten(data_format=data_format, **kwargs)
示例2: test_mnist_unet_with_shape_valid
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def test_mnist_unet_with_shape_valid(self):
num_subsamples = 100
(x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)
explained_model_builder = MLPModelBuilder(num_layers=2, num_units=64, activation="relu", p_dropout=0.2,
verbose=0, batch_size=256, learning_rate=0.001, num_epochs=2,
early_stopping_patience=128)
input_shape = x_train.shape[1:]
input_layer = Input(shape=input_shape)
last_layer = Flatten()(input_layer)
last_layer = explained_model_builder.build(last_layer)
last_layer = Dense(y_train.shape[-1], activation="softmax")(last_layer)
explained_model = Model(input_layer, last_layer)
explained_model.compile(loss="categorical_crossentropy",
optimizer="adam")
explained_model.fit(x_train, y_train)
masking_operation = ZeroMasking()
loss = categorical_crossentropy
downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
with_bns = [True if i % 2 == 0 else False for i in range(len(downsample_factors))]
for downsample_factor, with_bn in zip(downsample_factors, with_bns):
model_builder = UNetModelBuilder(downsample_factor, num_layers=2, num_units=64, activation="relu",
p_dropout=0.2, verbose=0, batch_size=256, learning_rate=0.001,
num_epochs=2, early_stopping_patience=128, with_bn=with_bn)
explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
downsample_factors=downsample_factor)
explainer.fit(x_train, y_train)
eval_score = explainer.score(x_test, y_test)
train_score = explainer.get_last_fit_score()
median = explainer.predict(x_test)
self.assertTrue(median.shape == x_test.shape)
示例3: architecture
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def architecture(inputs):
""" Architecture of model """
conv1 = Conv2D(32, kernel_size=(3, 3),
activation='relu')(inputs)
max1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(32, (3, 3), activation='relu')(max1)
max2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(64, (3, 3), activation='relu')(max2)
max3 = MaxPooling2D(pool_size=(2, 2))(conv3)
flat1 = Flatten()(max3)
dense1 = Dense(64, activation='relu')(flat1)
drop1 = Dropout(0.5)(dense1)
return drop1
示例4: combined_dnn_input
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def combined_dnn_input(sparse_embedding_list, dense_value_list):
if len(sparse_embedding_list) > 0 and len(dense_value_list) > 0:
sparse_dnn_input = Flatten()(concat_func(sparse_embedding_list))
dense_dnn_input = Flatten()(concat_func(dense_value_list))
return concat_func([sparse_dnn_input, dense_dnn_input])
elif len(sparse_embedding_list) > 0:
return Flatten()(concat_func(sparse_embedding_list))
elif len(dense_value_list) > 0:
return Flatten()(concat_func(dense_value_list))
else:
raise NotImplementedError("dnn_feature_columns can not be empty list")
示例5: __init__
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def __init__(self, game, encoder):
"""
NNet model, copied from Othello NNet, with reduced fully connected layers fc1 and fc2 and reduced nnet_args.num_channels
:param game: game configuration
:param encoder: Encoder, used to encode game boards
"""
from rts.src.config_class import CONFIG
# game params
self.board_x, self.board_y, num_encoders = game.getBoardSize()
self.action_size = game.getActionSize()
"""
num_encoders = CONFIG.nnet_args.encoder.num_encoders
"""
num_encoders = encoder.num_encoders
# Neural Net
self.input_boards = Input(shape=(self.board_x, self.board_y, num_encoders)) # s: batch_size x board_x x board_y x num_encoders
x_image = Reshape((self.board_x, self.board_y, num_encoders))(self.input_boards) # batch_size x board_x x board_y x num_encoders
h_conv1 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(x_image))) # batch_size x board_x x board_y x num_channels
h_conv2 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(h_conv1))) # batch_size x board_x x board_y x num_channels
h_conv3 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv2))) # batch_size x (board_x-2) x (board_y-2) x num_channels
h_conv4 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv3))) # batch_size x (board_x-4) x (board_y-4) x num_channels
h_conv4_flat = Flatten()(h_conv4)
s_fc1 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(256, use_bias=False)(h_conv4_flat)))) # batch_size x 1024
s_fc2 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(128, use_bias=False)(s_fc1)))) # batch_size x 1024
self.pi = Dense(self.action_size, activation='softmax', name='pi')(s_fc2) # batch_size x self.action_size
self.v = Dense(1, activation='tanh', name='v')(s_fc2) # batch_size x 1
self.model = Model(inputs=self.input_boards, outputs=[self.pi, self.v])
self.model.compile(loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=Adam(CONFIG.nnet_args.lr))
示例6: build_model
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def build_model():
base_model = VGG16(weights='imagenet')
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
return Model(inputs=base_model.input, outputs=top_model(base_model.output))
示例7: build
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def build(self, lambda_u=0.0001, lambda_v=0.0001, optimizer='rmsprop',
loss='mse', metrics='mse', initializer='uniform'):
"""
Init session and create model architecture.
:param lambda_u: lambda value of l2 norm for user embeddings.
:param lambda_v: lambda value of l2 norm for item embeddings.
:param optimizer: optimizer type.
:param loss: loss type.
:param metrics: evaluation metrics.
:param initializer: initializer of embedding
:return:
"""
# init session on first time ref
sess = self.session
# user embedding
user_input_layer = Input(shape=(1,), dtype='int32', name='user_input')
user_embedding_layer = Embedding(
input_dim=self.user_num,
output_dim=self.embedding_dim,
input_length=1,
name='user_embedding',
embeddings_regularizer=l2(lambda_u),
embeddings_initializer=initializer)(user_input_layer)
user_embedding_layer = Flatten(name='user_flatten')(user_embedding_layer)
# item embedding
item_input_layer = Input(shape=(1,), dtype='int32', name='item_input')
item_embedding_layer = Embedding(
input_dim=self.item_num,
output_dim=self.embedding_dim,
input_length=1,
name='item_embedding',
embeddings_regularizer=l2(lambda_v),
embeddings_initializer=initializer)(item_input_layer)
item_embedding_layer = Flatten(name='item_flatten')(item_embedding_layer)
# rating prediction
dot_layer = Dot(axes=-1,
name='dot_layer')([user_embedding_layer,
item_embedding_layer])
self._model = Model(
inputs=[user_input_layer, item_input_layer], outputs=[dot_layer])
# compile model
optimizer_instance = getattr(
tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
losses = getattr(tf.keras.losses, loss)
self._model.compile(optimizer=optimizer_instance,
loss=losses, metrics=metrics)
# pick user_embedding for aggregating
self._trainable_weights = {v.name.split(
"/")[0]: v for v in self._model.trainable_weights}
self._aggregate_weights = {
"user_embedding": self._trainable_weights["user_embedding"]}
示例8: _build
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def _build(self, lamda_u=0.0001, lamda_v=0.0001, optimizer='rmsprop',
loss='mse', metrics='mse', initializer='uniform'):
# init session on first time ref
sess = self.session
# user embedding
user_InputLayer = Input(shape=(1,), dtype='int32', name='user_input')
user_EmbeddingLayer = Embedding(input_dim=self.user_num,
output_dim=self.embedding_dim,
input_length=1,
name='user_embedding',
embeddings_regularizer=l2(lamda_u),
embeddings_initializer=initializer)(user_InputLayer)
user_EmbeddingLayer = Flatten(name='user_flatten')(user_EmbeddingLayer)
# user bias
user_BiasLayer = Embedding(input_dim=self.user_num, output_dim=1, input_length=1,
name='user_bias', embeddings_regularizer=l2(lamda_u),
embeddings_initializer=Zeros())(user_InputLayer)
user_BiasLayer = Flatten(name='user_bias_flatten')(user_BiasLayer)
# item embedding
item_InputLayer = Input(shape=(1,), dtype='int32', name='item_input')
item_EmbeddingLayer = Embedding(input_dim=self.item_num,
output_dim=self.embedding_dim,
input_length=1,
name='item_embedding',
embeddings_regularizer=l2(lamda_v),
embeddings_initializer=initializer)(item_InputLayer)
item_EmbeddingLayer = Flatten(name='item_flatten')(item_EmbeddingLayer)
# item bias
item_BiasLayer = Embedding(input_dim=self.item_num, output_dim=1, input_length=1,
name='item_bias', embeddings_regularizer=l2(lamda_v),
embeddings_initializer=Zeros())(item_InputLayer)
item_BiasLayer = Flatten(name='item_bias_flatten')(item_BiasLayer)
# rating prediction
dotLayer = Dot(axes=-1, name='dot_layer')([user_EmbeddingLayer, item_EmbeddingLayer])
# add mu, user bias and item bias
dotLayer = ConstantLayer(mu=self.mu)(dotLayer)
dotLayer = Add()([dotLayer, user_BiasLayer])
dotLayer = Add()([dotLayer, item_BiasLayer])
# create model
self._model = Model(inputs=[user_InputLayer, item_InputLayer], outputs=[dotLayer])
# compile model
optimizer_instance = getattr(tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
losses = getattr(tf.keras.losses, loss)
self._model.compile(optimizer=optimizer_instance,
loss=losses, metrics=metrics)
# pick user_embedding and user_bias for aggregating
self._trainable_weights = {v.name.split("/")[0]: v for v in self._model.trainable_weights}
LOGGER.debug(f"trainable weights {self._trainable_weights}")
self._aggregate_weights = {"user_embedding": self._trainable_weights["user_embedding"],
"user_bias": self._trainable_weights["user_bias"]}
示例9: _build_model
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def _build_model(self, input_shape):
x = Input(shape=(32, 32, 3))
y = x
y = Convolution2D(
filters=64,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = Convolution2D(
filters=64,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)
y = Convolution2D(
filters=128,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = Convolution2D(
filters=128,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)
y = Convolution2D(
filters=256,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = Convolution2D(
filters=256,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)
y = Flatten()(y)
y = Dropout(self.config.get("dropout", 0.5))(y)
y = Dense(
units=10, activation="softmax", kernel_initializer="he_normal")(y)
model = Model(inputs=x, outputs=y, name="model1")
return model
示例10: _3d_cnn_model
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def _3d_cnn_model(input_shape, num_classes):
# Define Model
inputs = Input(shape=input_shape, name="input-layer")
# Conv 1
X = Conv3D(filters=16, kernel_size=(3, 1, 5), strides=(1, 1, 1), name="conv1-1")(inputs)
X = PReLU(name="activation1-1")(X)
X = Conv3D(filters=16, kernel_size=(3, 9, 1), strides=(1, 2, 1), name="conv1-2")(X)
X = PReLU(name="activation1-2")(X)
X = MaxPool3D(pool_size=(1, 1, 2), strides=(1, 1, 2), padding="valid", name="pool-1")(X)
# X = Dropout(0.2)(X)
# Conv 2
X = Conv3D(filters=32, kernel_size=(3, 1, 4), strides=(1, 1, 1), name="conv2-1")(X)
X = PReLU(name="activation2-1")(X)
X = Conv3D(filters=32, kernel_size=(3, 8, 1), strides=(1, 2, 1), name="conv2-2")(X)
X = PReLU(name="activation2-2")(X)
X = MaxPool3D(pool_size=(1, 1, 2), strides=(1, 1, 2), padding="valid", name="pool-2")(X)
# X = Dropout(0.2)(X)
# Conv 3
X = Conv3D(filters=64, kernel_size=(3, 1, 3), strides=(1, 1, 1), name="conv3-1")(X)
X = PReLU(name="activation3-1")(X)
X = Conv3D(filters=64, kernel_size=(3, 7, 1), strides=(1, 1, 1), name="conv3-2")(X)
X = PReLU(name="activation3-2")(X)
# X = Dropout(0.2)(X)
# Conv 4
X = Conv3D(filters=128, kernel_size=(3, 1, 3), strides=(1, 1, 1), name="conv4-1")(X)
X = PReLU(name="activation4-1")(X)
X = Conv3D(filters=128, kernel_size=(3, 7, 1), strides=(1, 1, 1), name="conv4-2")(X)
X = PReLU(name="activation4-2")(X)
# X = Dropout(0.2)(X)
# Flaten
X = Flatten()(X)
# FC
X = Dense(units=128, name="fc", activation='relu')(X)
# Final Activation
X = Dense(units=num_classes, activation='softmax', name="ac_softmax")(X)
model = Model(inputs=inputs, outputs=X)
return model
示例11: model
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def model(train_x, train_y, test_x, test_y, epoch):
'''
:param train_x: train features
:param train_y: train labels
:param test_x: test features
:param test_y: test labels
:param epoch: no. of epochs
:return:
'''
conv_model = Sequential()
# first layer with input shape (img_rows, img_cols, 1) and 12 filters
conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu',
input_shape=(img_rows, img_cols, 1)))
# second layer with 12 filters
conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
# third layer with 12 filers
conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
# flatten layer
conv_model.add(Flatten())
# adding a Dense layer
conv_model.add(Dense(100, activation='relu'))
# adding the final Dense layer with softmax
conv_model.add(Dense(num_classes, activation='softmax'))
# compile the model
conv_model.compile(optimizer=keras.optimizers.Adadelta(),
loss='categorical_crossentropy',
metrics=['accuracy'])
print("\n Training the Convolution Neural Network on MNIST data\n")
# fit the model
conv_model.fit(train_x, train_y, batch_size=128, epochs=epoch,
validation_split=0.1, verbose=2)
predicted_train_y = conv_model.predict(train_x)
train_accuracy = (sum(np.argmax(predicted_train_y, axis=1)
== np.argmax(train_y, axis=1))/(float(len(train_y))))
print('Train accuracy : ', train_accuracy)
predicted_test_y = conv_model.predict(test_x)
test_accuracy = (sum(np.argmax(predicted_test_y, axis=1)
== np.argmax(test_y, axis=1))/(float(len(test_y))))
print('Test accuracy : ', test_accuracy)
CNN_accuracy = {'train_accuracy': train_accuracy,
'test_accuracy': test_accuracy, 'epoch': epoch}
return conv_model, CNN_accuracy
示例12: FiBiNET
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 别名]
def FiBiNET(linear_feature_columns, dnn_feature_columns, bilinear_type='interaction', reduction_ratio=3,
dnn_hidden_units=(128, 128), l2_reg_linear=1e-5,
l2_reg_embedding=1e-5, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_activation='relu',
task='binary'):
"""Instantiates the Feature Importance and Bilinear feature Interaction NETwork architecture.
:param linear_feature_columns: An iterable containing all the features used by linear part of the model.
:param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
:param bilinear_type: str,bilinear function type used in Bilinear Interaction Layer,can be ``'all'`` , ``'each'`` or ``'interaction'``
:param reduction_ratio: integer in [1,inf), reduction ratio used in SENET Layer
:param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN
:param l2_reg_linear: float. L2 regularizer strength applied to wide part
:param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
:param l2_reg_dnn: float. L2 regularizer strength applied to DNN
:param seed: integer ,to use as random seed.
:param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
:param dnn_activation: Activation function to use in DNN
:param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss
:return: A Keras model instance.
"""
features = build_input_features(linear_feature_columns + dnn_feature_columns)
inputs_list = list(features.values())
linear_logit = get_linear_logit(features, linear_feature_columns, seed=seed, prefix='linear',
l2_reg=l2_reg_linear)
sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
l2_reg_embedding, seed)
senet_embedding_list = SENETLayer(
reduction_ratio, seed)(sparse_embedding_list)
senet_bilinear_out = BilinearInteraction(
bilinear_type=bilinear_type, seed=seed)(senet_embedding_list)
bilinear_out = BilinearInteraction(
bilinear_type=bilinear_type, seed=seed)(sparse_embedding_list)
dnn_input = combined_dnn_input(
[Flatten()(concat_func([senet_bilinear_out, bilinear_out]))], dense_value_list)
dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
False, seed)(dnn_input)
dnn_logit = Dense(
1, use_bias=False, activation=None)(dnn_out)
final_logit = add_func([linear_logit, dnn_logit])
output = PredictionLayer(task)(final_logit)
model = Model(inputs=inputs_list, outputs=output)
return model