本文整理汇总了Python中tensorflow.python.keras.layers.Conv2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Conv2D方法的具体用法?Python layers.Conv2D怎么用?Python layers.Conv2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.keras.layers
的用法示例。
在下文中一共展示了layers.Conv2D方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: resnet_module
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def resnet_module(input, channel_depth, strided_pool=False ):
residual_input = input
stride = 1
if(strided_pool):
stride = 2
residual_input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(residual_input)
residual_input = BatchNormalization()(residual_input)
input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=1, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(input)
input = BatchNormalization()(input)
input = add([input, residual_input])
input = Activation("relu")(input)
return input
示例2: resnet_first_block_first_module
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def resnet_first_block_first_module(input, channel_depth):
residual_input = input
stride = 1
residual_input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(residual_input)
residual_input = BatchNormalization()(residual_input)
input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = Activation("relu")(input)
input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(input)
input = BatchNormalization()(input)
input = add([input, residual_input])
input = Activation("relu")(input)
return input
示例3: __transition_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
Args:
ip: keras tensor
nb_filter: number of filters
compression: calculated as 1 - reduction. Reduces the number of feature maps
in the transition block.
dropout_rate: dropout rate
weight_decay: weight decay factor
Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
x = Activation('relu')(x)
x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
kernel_regularizer=l2(weight_decay))(x)
x = AveragePooling2D((2, 2), strides=(2, 2))(x)
return x
示例4: squeezenet_fire_module
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def squeezenet_fire_module(input, input_channel_small=16, input_channel_large=64):
channel_axis = 3
input = Conv2D(input_channel_small, (1,1), padding="valid" )(input)
input = Activation("relu")(input)
input_branch_1 = Conv2D(input_channel_large, (1,1), padding="valid" )(input)
input_branch_1 = Activation("relu")(input_branch_1)
input_branch_2 = Conv2D(input_channel_large, (3, 3), padding="same")(input)
input_branch_2 = Activation("relu")(input_branch_2)
input = concatenate([input_branch_1, input_branch_2], axis=channel_axis)
return input
示例5: __conv_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4):
''' Apply BatchNorm, Relu, 3x3 Conv2D, optional bottleneck block and dropout
Args:
ip: Input keras tensor
nb_filter: number of filters
bottleneck: add bottleneck block
dropout_rate: dropout rate
weight_decay: weight decay factor
Returns: keras tensor with batch_norm, relu and convolution2d added (optional bottleneck)
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
x = Activation('relu')(x)
if bottleneck:
inter_channel = nb_filter * 4 # Obtained from https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua
x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
kernel_regularizer=l2(weight_decay))(x)
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
x = Activation('relu')(x)
x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False)(x)
if dropout_rate:
x = Dropout(dropout_rate)(x)
return x
示例6: architecture
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def architecture(inputs):
""" Architecture of model """
conv1 = Conv2D(32, kernel_size=(3, 3),
activation='relu')(inputs)
max1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(32, (3, 3), activation='relu')(max1)
max2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(64, (3, 3), activation='relu')(max2)
max3 = MaxPooling2D(pool_size=(2, 2))(conv3)
flat1 = Flatten()(max3)
dense1 = Dense(64, activation='relu')(flat1)
drop1 = Dropout(0.5)(dense1)
return drop1
示例7: __init__
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __init__(self, game, encoder):
"""
NNet model, copied from Othello NNet, with reduced fully connected layers fc1 and fc2 and reduced nnet_args.num_channels
:param game: game configuration
:param encoder: Encoder, used to encode game boards
"""
from rts.src.config_class import CONFIG
# game params
self.board_x, self.board_y, num_encoders = game.getBoardSize()
self.action_size = game.getActionSize()
"""
num_encoders = CONFIG.nnet_args.encoder.num_encoders
"""
num_encoders = encoder.num_encoders
# Neural Net
self.input_boards = Input(shape=(self.board_x, self.board_y, num_encoders)) # s: batch_size x board_x x board_y x num_encoders
x_image = Reshape((self.board_x, self.board_y, num_encoders))(self.input_boards) # batch_size x board_x x board_y x num_encoders
h_conv1 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(x_image))) # batch_size x board_x x board_y x num_channels
h_conv2 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(h_conv1))) # batch_size x board_x x board_y x num_channels
h_conv3 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv2))) # batch_size x (board_x-2) x (board_y-2) x num_channels
h_conv4 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv3))) # batch_size x (board_x-4) x (board_y-4) x num_channels
h_conv4_flat = Flatten()(h_conv4)
s_fc1 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(256, use_bias=False)(h_conv4_flat)))) # batch_size x 1024
s_fc2 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(128, use_bias=False)(s_fc1)))) # batch_size x 1024
self.pi = Dense(self.action_size, activation='softmax', name='pi')(s_fc2) # batch_size x self.action_size
self.v = Dense(1, activation='tanh', name='v')(s_fc2) # batch_size x 1
self.model = Model(inputs=self.input_boards, outputs=[self.pi, self.v])
self.model.compile(loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=Adam(CONFIG.nnet_args.lr))
示例8: __init__
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __init__(self, filters, strides):
'''
Performs a Pointwise Conv to preserve the stride and number of channels,
or simply adds an identity connection.
'''
super(Identity, self).__init__()
if strides == (2, 2):
self.op = Conv2D(filters, (1, 1), strides, padding='same',
kernel_initializer='he_uniform')
else:
self.op = lambda x: x
示例9: conv2d_bn
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def conv2d_bn(x,
filters,
num_row,
num_col,
padding='same',
strides=(1, 1),
name=None):
"""Utility function to apply conv + BN.
# Arguments
x: input tensor.
filters: filters in `Conv2D`.
num_row: height of the convolution kernel.
num_col: width of the convolution kernel.
padding: padding mode in `Conv2D`.
strides: strides in `Conv2D`.
name: name of the ops; will become `name + '_conv'`
for the convolution and `name + '_bn'` for the
batch norm layer.
# Returns
Output tensor after applying `Conv2D` and `BatchNormalization`.
"""
if name is not None:
bn_name = name + '_bn'
conv_name = name + '_conv'
else:
bn_name = None
conv_name = None
if K.image_data_format() == 'channels_first':
bn_axis = 1
else:
bn_axis = 3
x = Conv2D(
filters, (num_row, num_col),
strides=strides,
padding=padding,
use_bias=False,
name=conv_name)(x)
x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
x = Activation('relu', name=name)(x)
return x
示例10: identity_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1),
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1),
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
示例11: identity_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
Args:
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
Returns:
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size, use_bias=False,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
示例12: identity_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size,
padding='same', use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters3, (1, 1), use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2c')(x)
x = layers.BatchNormalization(axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
示例13: identity_building_block
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_building_block(input_tensor,
kernel_size,
filters,
stage,
block,
training=None):
"""The identity block is the block that has no conv layer at shortcut.
Arguments:
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: current block label, used for generating layer names
training: Only used if training keras model with Estimator. In other
scenarios it is handled automatically.
Returns:
Output tensor for the block.
"""
filters1, filters2 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, kernel_size,
padding='same', use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = layers.BatchNormalization(
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(x, training=training)
x = layers.Activation('relu')(x)
x = layers.Conv2D(filters2, kernel_size,
padding='same', use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = layers.BatchNormalization(
axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(x, training=training)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:53,代码来源:resnet_cifar_model.py
示例14: model
# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def model(train_x, train_y, test_x, test_y, epoch):
'''
:param train_x: train features
:param train_y: train labels
:param test_x: test features
:param test_y: test labels
:param epoch: no. of epochs
:return:
'''
conv_model = Sequential()
# first layer with input shape (img_rows, img_cols, 1) and 12 filters
conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu',
input_shape=(img_rows, img_cols, 1)))
# second layer with 12 filters
conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
# third layer with 12 filers
conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
# flatten layer
conv_model.add(Flatten())
# adding a Dense layer
conv_model.add(Dense(100, activation='relu'))
# adding the final Dense layer with softmax
conv_model.add(Dense(num_classes, activation='softmax'))
# compile the model
conv_model.compile(optimizer=keras.optimizers.Adadelta(),
loss='categorical_crossentropy',
metrics=['accuracy'])
print("\n Training the Convolution Neural Network on MNIST data\n")
# fit the model
conv_model.fit(train_x, train_y, batch_size=128, epochs=epoch,
validation_split=0.1, verbose=2)
predicted_train_y = conv_model.predict(train_x)
train_accuracy = (sum(np.argmax(predicted_train_y, axis=1)
== np.argmax(train_y, axis=1))/(float(len(train_y))))
print('Train accuracy : ', train_accuracy)
predicted_test_y = conv_model.predict(test_x)
test_accuracy = (sum(np.argmax(predicted_test_y, axis=1)
== np.argmax(test_y, axis=1))/(float(len(test_y))))
print('Test accuracy : ', test_accuracy)
CNN_accuracy = {'train_accuracy': train_accuracy,
'test_accuracy': test_accuracy, 'epoch': epoch}
return conv_model, CNN_accuracy