当前位置: 首页>>代码示例>>Python>>正文


Python layers.Conv2D方法代码示例

本文整理汇总了Python中tensorflow.python.keras.layers.Conv2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Conv2D方法的具体用法?Python layers.Conv2D怎么用?Python layers.Conv2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.keras.layers的用法示例。


在下文中一共展示了layers.Conv2D方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: resnet_module

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def resnet_module(input, channel_depth, strided_pool=False ):
    residual_input = input
    stride = 1

    if(strided_pool):
        stride = 2
        residual_input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(residual_input)
        residual_input = BatchNormalization()(residual_input)

    input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=1, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(input)
    input = BatchNormalization()(input)

    input = add([input, residual_input])
    input = Activation("relu")(input)

    return input 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:26,代码来源:resnet50.py

示例2: resnet_first_block_first_module

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def resnet_first_block_first_module(input, channel_depth):
    residual_input = input
    stride = 1

    residual_input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(residual_input)
    residual_input = BatchNormalization()(residual_input)

    input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)

    input = add([input, residual_input])
    input = Activation("relu")(input)

    return input 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:24,代码来源:resnet50.py

示例3: __transition_block

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    return x 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:22,代码来源:densenet.py

示例4: squeezenet_fire_module

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def squeezenet_fire_module(input, input_channel_small=16, input_channel_large=64):

    channel_axis = 3

    input = Conv2D(input_channel_small, (1,1), padding="valid" )(input)
    input = Activation("relu")(input)

    input_branch_1 = Conv2D(input_channel_large, (1,1), padding="valid" )(input)
    input_branch_1 = Activation("relu")(input_branch_1)

    input_branch_2 = Conv2D(input_channel_large, (3, 3), padding="same")(input)
    input_branch_2 = Activation("relu")(input_branch_2)

    input = concatenate([input_branch_1, input_branch_2], axis=channel_axis)

    return input 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:18,代码来源:squeezenet.py

示例5: __conv_block

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu, 3x3 Conv2D, optional bottleneck block and dropout
    Args:
        ip: Input keras tensor
        nb_filter: number of filters
        bottleneck: add bottleneck block
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor with batch_norm, relu and convolution2d added (optional bottleneck)
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)

    if bottleneck:
        inter_channel = nb_filter * 4  # Obtained from https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua

        x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
                   kernel_regularizer=l2(weight_decay))(x)
        x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
        x = Activation('relu')(x)

    x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False)(x)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    return x 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:30,代码来源:densenet.py

示例6: architecture

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def architecture(inputs):
    """ Architecture of model """

    conv1 = Conv2D(32, kernel_size=(3, 3),
                   activation='relu')(inputs)
    max1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(32, (3, 3), activation='relu')(max1)
    max2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(64, (3, 3), activation='relu')(max2)
    max3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    flat1 = Flatten()(max3)
    dense1 = Dense(64, activation='relu')(flat1)
    drop1 = Dropout(0.5)(dense1)

    return drop1 
开发者ID:marco-willi,项目名称:camera-trap-classifier,代码行数:17,代码来源:small_cnn.py

示例7: __init__

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __init__(self, game, encoder):
        """
        NNet model, copied from Othello NNet, with reduced fully connected layers fc1 and fc2 and reduced nnet_args.num_channels
        :param game: game configuration
        :param encoder: Encoder, used to encode game boards
        """
        from rts.src.config_class import CONFIG

        # game params
        self.board_x, self.board_y, num_encoders = game.getBoardSize()
        self.action_size = game.getActionSize()

        """
        num_encoders = CONFIG.nnet_args.encoder.num_encoders
        """
        num_encoders = encoder.num_encoders

        # Neural Net
        self.input_boards = Input(shape=(self.board_x, self.board_y, num_encoders))  # s: batch_size x board_x x board_y x num_encoders

        x_image = Reshape((self.board_x, self.board_y, num_encoders))(self.input_boards)  # batch_size  x board_x x board_y x num_encoders
        h_conv1 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(x_image)))  # batch_size  x board_x x board_y x num_channels
        h_conv2 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(h_conv1)))  # batch_size  x board_x x board_y x num_channels
        h_conv3 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv2)))  # batch_size  x (board_x-2) x (board_y-2) x num_channels
        h_conv4 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv3)))  # batch_size  x (board_x-4) x (board_y-4) x num_channels
        h_conv4_flat = Flatten()(h_conv4)
        s_fc1 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(256, use_bias=False)(h_conv4_flat))))  # batch_size x 1024
        s_fc2 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(128, use_bias=False)(s_fc1))))  # batch_size x 1024
        self.pi = Dense(self.action_size, activation='softmax', name='pi')(s_fc2)  # batch_size x self.action_size
        self.v = Dense(1, activation='tanh', name='v')(s_fc2)  # batch_size x 1

        self.model = Model(inputs=self.input_boards, outputs=[self.pi, self.v])
        self.model.compile(loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=Adam(CONFIG.nnet_args.lr)) 
开发者ID:suragnair,项目名称:alpha-zero-general,代码行数:35,代码来源:RTSNNet.py

示例8: __init__

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def __init__(self, filters, strides):
        '''
        Performs a Pointwise Conv to preserve the stride and number of channels,
        or simply adds an identity connection.
        '''
        super(Identity, self).__init__()

        if strides == (2, 2):
            self.op = Conv2D(filters, (1, 1), strides, padding='same',
                             kernel_initializer='he_uniform')
        else:
            self.op = lambda x: x 
开发者ID:titu1994,项目名称:progressive-neural-architecture-search,代码行数:14,代码来源:ops.py

示例9: conv2d_bn

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
    """Utility function to apply conv + BN.

    # Arguments
        x: input tensor.
        filters: filters in `Conv2D`.
        num_row: height of the convolution kernel.
        num_col: width of the convolution kernel.
        padding: padding mode in `Conv2D`.
        strides: strides in `Conv2D`.
        name: name of the ops; will become `name + '_conv'`
            for the convolution and `name + '_bn'` for the
            batch norm layer.

    # Returns
        Output tensor after applying `Conv2D` and `BatchNormalization`.
    """
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    if K.image_data_format() == 'channels_first':
        bn_axis = 1
    else:
        bn_axis = 3
    x = Conv2D(
        filters, (num_row, num_col),
        strides=strides,
        padding=padding,
        use_bias=False,
        name=conv_name)(x)
    x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
    x = Activation('relu', name=name)(x)
    return x 
开发者ID:OlafenwaMoses,项目名称:ImageAI,代码行数:44,代码来源:inceptionv3.py

示例10: identity_block

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  # Returns
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:60,代码来源:resnet_model.py

示例11: identity_block

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  Args:
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  Returns:
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size, use_bias=False,
                    padding='same',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
开发者ID:artyompal,项目名称:tpu_models,代码行数:57,代码来源:resnet_model.py

示例12: identity_block

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  # Returns
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
开发者ID:GoogleCloudPlatform,项目名称:ml-on-gcp,代码行数:57,代码来源:resnet_model.py

示例13: identity_building_block

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def identity_building_block(input_tensor,
                            kernel_size,
                            filters,
                            stage,
                            block,
                            training=None):
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: current block label, used for generating layer names
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.

  Returns:
    Output tensor for the block.
  """
  filters1, filters2 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(x, training=training)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(x, training=training)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:53,代码来源:resnet_cifar_model.py

示例14: model

# 需要导入模块: from tensorflow.python.keras import layers [as 别名]
# 或者: from tensorflow.python.keras.layers import Conv2D [as 别名]
def model(train_x, train_y, test_x, test_y, epoch):
    '''

    :param train_x: train features
    :param train_y: train labels
    :param test_x:  test features
    :param test_y: test labels
    :param epoch: no. of epochs
    :return:
    '''
    conv_model = Sequential()
    # first layer with input shape (img_rows, img_cols, 1) and 12 filters
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu',
                          input_shape=(img_rows, img_cols, 1)))
    # second layer with 12 filters
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
    # third layer with 12 filers
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
    # flatten layer
    conv_model.add(Flatten())
    # adding a Dense layer
    conv_model.add(Dense(100, activation='relu'))
    # adding the final Dense layer with softmax
    conv_model.add(Dense(num_classes, activation='softmax'))

    # compile the model
    conv_model.compile(optimizer=keras.optimizers.Adadelta(),
                       loss='categorical_crossentropy',
                       metrics=['accuracy'])
    print("\n Training the Convolution Neural Network on MNIST data\n")
    # fit the model
    conv_model.fit(train_x, train_y, batch_size=128, epochs=epoch,
                   validation_split=0.1, verbose=2)
    predicted_train_y = conv_model.predict(train_x)
    train_accuracy = (sum(np.argmax(predicted_train_y, axis=1)
                          == np.argmax(train_y, axis=1))/(float(len(train_y))))
    print('Train accuracy : ', train_accuracy)
    predicted_test_y = conv_model.predict(test_x)
    test_accuracy = (sum(np.argmax(predicted_test_y, axis=1)
                         == np.argmax(test_y, axis=1))/(float(len(test_y))))
    print('Test accuracy : ', test_accuracy)
    CNN_accuracy = {'train_accuracy': train_accuracy,
                    'test_accuracy': test_accuracy, 'epoch': epoch}
    return conv_model, CNN_accuracy 
开发者ID:aliakbar09a,项目名称:mnist_digits_classification,代码行数:46,代码来源:conv_network.py


注:本文中的tensorflow.python.keras.layers.Conv2D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。