当前位置: 首页>>代码示例>>Python>>正文


Python tensor_shape.dimension_value方法代码示例

本文整理汇总了Python中tensorflow.python.framework.tensor_shape.dimension_value方法的典型用法代码示例。如果您正苦于以下问题:Python tensor_shape.dimension_value方法的具体用法?Python tensor_shape.dimension_value怎么用?Python tensor_shape.dimension_value使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.framework.tensor_shape的用法示例。


在下文中一共展示了tensor_shape.dimension_value方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: from tensorflow.python.framework import tensor_shape [as 别名]
# 或者: from tensorflow.python.framework.tensor_shape import dimension_value [as 别名]
def build(self, input_shape):
        super().build(input_shape)
        self.build = False
        self.last_dim = tensor_shape.dimension_value(input_shape[-1])
        self.noisy_w = self.add_weight(
            'noise_kernel',
            shape=[self.last_dim, self.units],
            initializer=tf.random_normal_initializer(0.0, .1),
            regularizer=self.kernel_regularizer,
            constraint=self.kernel_constraint,
            dtype=self.dtype,
            trainable=True)
        if self.use_bias:
            self.noisy_b = self.add_weight(
                'noise_bias',
                shape=[self.units, ],
                initializer=tf.constant_initializer(self.noise_sigma / (self.units**0.5)),
                regularizer=self.bias_regularizer,
                constraint=self.bias_constraint,
                dtype=self.dtype,
                trainable=True)
        else:
            self.bias = None
        self.build = True 
开发者ID:StepNeverStop,项目名称:RLs,代码行数:26,代码来源:layers.py

示例2: build

# 需要导入模块: from tensorflow.python.framework import tensor_shape [as 别名]
# 或者: from tensorflow.python.framework.tensor_shape import dimension_value [as 别名]
def build(self, input_shape):
        if self.proj_weights is None:
            input_dim = tensor_shape.dimension_value(input_shape[-1])
            self.layer_weights = self.add_weight(
                'output_layer_weights',
                shape=[input_dim, self.output_dim],
                initializer=self.kernel_initializer,
                trainable=True)
        super(OutputLayer, self).build(input_shape) 
开发者ID:akanyaani,项目名称:gpt-2-tensorflow2.0,代码行数:11,代码来源:gpt2_model.py

示例3: convert_legacy_structure

# 需要导入模块: from tensorflow.python.framework import tensor_shape [as 别名]
# 或者: from tensorflow.python.framework.tensor_shape import dimension_value [as 别名]
def convert_legacy_structure(output_types, output_shapes, output_classes):
  """Returns a `Structure` that represents the given legacy structure.
  This method provides a way to convert from the existing `Dataset` and
  `Iterator` structure-related properties to a `Structure` object. A "legacy"
  structure is represented by the `tf.data.Dataset.output_types`,
  `tf.data.Dataset.output_shapes`, and `tf.data.Dataset.output_classes`
  properties.
  TODO(b/110122868): Remove this function once `Structure` is used throughout
  `tf.data`.
  Args:
    output_types: A nested structure of `tf.DType` objects corresponding to
      each component of a structured value.
    output_shapes: A nested structure of `tf.TensorShape` objects
      corresponding to each component a structured value.
    output_classes: A nested structure of Python `type` objects corresponding
      to each component of a structured value.
  Returns:
    A `Structure`.
  Raises:
    TypeError: If a structure cannot be built from the arguments, because one of
      the component classes in `output_classes` is not supported.
  """
  flat_types = nest.flatten(output_types)
  flat_shapes = nest.flatten(output_shapes)
  flat_classes = nest.flatten(output_classes)
  flat_ret = []
  for flat_type, flat_shape, flat_class in zip(flat_types, flat_shapes,
                                               flat_classes):
    if isinstance(flat_class, Structure):
      flat_ret.append(flat_class)
    elif issubclass(flat_class, sparse_tensor_lib.SparseTensor):
      flat_ret.append(SparseTensorStructure(flat_type, flat_shape))
    elif issubclass(flat_class, ops.Tensor):
      flat_ret.append(TensorStructure(flat_type, flat_shape))
    elif issubclass(flat_class, tensor_array_ops.TensorArray):
      # We sneaked the dynamic_size and infer_shape into the legacy shape.
      flat_ret.append(
          TensorArrayStructure(
              flat_type, flat_shape[2:],
              dynamic_size=tensor_shape.dimension_value(flat_shape[0]),
              infer_shape=tensor_shape.dimension_value(flat_shape[1])))
    else:
      # NOTE(mrry): Since legacy structures produced by iterators only
      # comprise Tensors, SparseTensors, and nests, we do not need to
      # support all structure types here.
      raise TypeError(
          "Could not build a structure for output class %r" % (flat_class,))

  ret = nest.pack_sequence_as(output_classes, flat_ret)
  if isinstance(ret, Structure):
    return ret
  else:
    return NestedStructure(ret)


# NOTE(mrry): The following classes make extensive use of non-public methods of
# their base class, so we disable the protected-access lint warning once here.
# pylint: disable=protected-access
# @tf_export("data.experimental.NestedStructure") 
开发者ID:yyht,项目名称:BERT,代码行数:61,代码来源:strcuture.py


注:本文中的tensorflow.python.framework.tensor_shape.dimension_value方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。