本文整理汇总了Python中tensorflow.python.framework.ops方法的典型用法代码示例。如果您正苦于以下问题:Python framework.ops方法的具体用法?Python framework.ops怎么用?Python framework.ops使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.framework
的用法示例。
在下文中一共展示了framework.ops方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: meta_minimize
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def meta_minimize(self, make_loss, len_unroll, learning_rate=0.01, **kwargs):
"""Returns an operator minimizing the meta-loss.
Args:
make_loss: Callable which returns the optimizee loss; note that this
should create its ops in the default graph.
len_unroll: Number of steps to unroll.
learning_rate: Learning rate for the Adam optimizer.
**kwargs: keyword arguments forwarded to meta_loss.
Returns:
namedtuple containing (step, update, reset, fx, x)
"""
info = self.meta_loss(make_loss, len_unroll, **kwargs)
optimizer = tf.train.AdamOptimizer(learning_rate)
step = optimizer.minimize(info.loss)
return MetaStep(step, *info[1:])
示例2: _add_variable_collection
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def _add_variable_collection(weight_collections):
if weight_collections:
weight_collections = list(
set(list(weight_collections) + [ops.GraphKeys.GLOBAL_VARIABLES]))
return weight_collections
# TODO(jamieas): remove the following logic once all FeatureColumn types are
# supported for sequences.
# pylint: disable=protected-access
示例3: forward_train
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def forward_train(self, train_input):
batch_norm_params = {'epsilon': 1e-5,
'scale': True,
'is_training': True,
'updates_collections': ops.GraphKeys.UPDATE_OPS}
with slim.arg_scope([layers.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.conv2d],
weights_initializer=he_normal_fanout(),
weights_regularizer=slim.l2_regularizer(self.cfg['NET']['weight_l2_scale'])):
final_logit = self._forward(train_input)
return final_logit
示例4: forward_eval
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def forward_eval(self, eval_input):
batch_norm_params = {'epsilon': 1e-5,
'scale': True,
'is_training': False,
'updates_collections': ops.GraphKeys.UPDATE_OPS}
with slim.arg_scope([layers.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.conv2d],
weights_regularizer=slim.l2_regularizer(self.cfg['NET']['weight_l2_scale'])):
final_logit = self._forward(eval_input)
return final_logit
示例5: model_summary
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def model_summary(self):
cnt = Counter()
ops = ['ResizeNearestNeighbor', 'Relu', 'Conv2D']
for op in tf.get_default_graph().get_operations():
if op.type in ops:
cnt[op.type] += 1
print(cnt)
示例6: _reduced_kernel_size_for_small_input
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
"""Define kernel size which is automatically reduced for small input.
If the shape of the input images is unknown at graph construction time this
function assumes that the input images are is large enough.
Args:
input_tensor: input tensor of size [batch_size, height, width, channels].
kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]
Returns:
a tensor with the kernel size.
TODO(jrru): Make this function work with unknown shapes. Theoretically, this
can be done with the code below. Problems are two-fold: (1) If the shape was
known, it will be lost. (2) inception.slim.ops._two_element_tuple cannot
handle tensors that define the kernel size.
shape = tf.shape(input_tensor)
return = tf.stack([tf.minimum(shape[1], kernel_size[0]),
tf.minimum(shape[2], kernel_size[1])])
"""
shape = input_tensor.get_shape().as_list()
if shape[1] is None or shape[2] is None:
kernel_size_out = kernel_size
else:
kernel_size_out = [
min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])
]
return kernel_size_out
示例7: _reduced_kernel_size_for_small_input
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def _reduced_kernel_size_for_small_input(input_tensor, kernel_size):
"""Define kernel size which is automatically reduced for small input.
If the shape of the input images is unknown at graph construction time this
function assumes that the input images are is large enough.
Args:
input_tensor: input tensor of size [batch_size, height, width, channels].
kernel_size: desired kernel size of length 2: [kernel_height, kernel_width]
Returns:
a tensor with the kernel size.
Make this function work with unknown shapes. Theoretically, this
can be done with the code below. Problems are two-fold: (1) If the shape was
known, it will be lost. (2) inception.tf.contrib.slim.ops._two_element_tuple
cannot
handle tensors that define the kernel size.
shape = tf.shape(input_tensor)
return = tf.stack([tf.minimum(shape[1], kernel_size[0]),
tf.minimum(shape[2], kernel_size[1])])
"""
shape = input_tensor.get_shape().as_list()
if shape[1] is None or shape[2] is None:
kernel_size_out = kernel_size
else:
kernel_size_out = [
min(shape[1], kernel_size[0]), min(shape[2], kernel_size[1])
]
return kernel_size_out
示例8: _input_from_feature_columns
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def _input_from_feature_columns(columns_to_tensors,
feature_columns,
weight_collections,
trainable,
scope,
output_rank,
default_name):
"""Implementation of `input_from(_sequence)_feature_columns`."""
columns_to_tensors = columns_to_tensors.copy()
check_feature_columns(feature_columns)
with variable_scope.variable_scope(scope,
default_name=default_name,
values=columns_to_tensors.values()):
output_tensors = []
transformer = _Transformer(columns_to_tensors)
if weight_collections:
weight_collections = list(set(list(weight_collections) +
[ops.GraphKeys.GLOBAL_VARIABLES]))
for column in sorted(set(feature_columns), key=lambda x: x.key):
with variable_scope.variable_scope(None,
default_name=column.name,
values=columns_to_tensors.values()):
transformed_tensor = transformer.transform(column)
if output_rank == 3:
transformed_tensor = nest.map_structure(
functools.partial(
_maybe_reshape_input_tensor,
column_name=column.name,
output_rank=output_rank), transformed_tensor)
try:
# pylint: disable=protected-access
arguments = column._deep_embedding_lookup_arguments(
transformed_tensor)
output_tensors.append(
fc._embeddings_from_arguments( # pylint: disable=protected-access
column,
arguments,
weight_collections,
trainable,
output_rank=output_rank))
except NotImplementedError as ee:
try:
# pylint: disable=protected-access
output_tensors.append(column._to_dnn_input_layer(
transformed_tensor,
weight_collections,
trainable,
output_rank=output_rank))
except ValueError as e:
raise ValueError('Error creating input layer for column: {}.\n'
'{}, {}'.format(column.name, e, ee))
return array_ops.concat(output_tensors, output_rank - 1)
示例9: inception_v2_arg_scope
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def inception_v2_arg_scope(weight_decay=0.00004,
batch_norm_var_collection='moving_vars',
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001,
updates_collections=ops.GraphKeys.UPDATE_OPS,
use_fused_batchnorm=True):
"""Defines the default InceptionV2 arg scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
batch_norm_decay: Decay for batch norm moving average
batch_norm_epsilon: Small float added to variance to avoid division by zero
updates_collections: Collections for the update ops of the layer
use_fused_batchnorm: Enable fused batchnorm.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
# collection containing update_ops.
'updates_collections': updates_collections,
# Enable fused batchnorm.
'fused': use_fused_batchnorm,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
示例10: inception_v4_arg_scope
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def inception_v4_arg_scope(weight_decay=0.00004,
batch_norm_var_collection='moving_vars',
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001,
updates_collections=ops.GraphKeys.UPDATE_OPS,
use_fused_batchnorm=True,
activation_fn=nn_ops.relu):
"""Defines the default InceptionV3 arg scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
batch_norm_decay: Decay for batch norm moving average
batch_norm_epsilon: Small float added to variance to avoid division by zero
updates_collections: Collections for the update ops of the layer
use_fused_batchnorm: Enable fused batchnorm.
activation_fn: Activation function for conv2d.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
# collection containing update_ops.
'updates_collections': updates_collections,
# Use fused batch norm if possible.
'fused': use_fused_batchnorm,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
normalizer_fn = slim.batch_norm
normalizer_params = batch_norm_params
# Set weight_decay for weights in Conv and FC layers.
with slim.arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay)):
with slim.arg_scope(
[slim.conv2d],
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
normalizer_params=normalizer_params) as sc:
return sc
示例11: inception_v3_arg_scope
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def inception_v3_arg_scope(weight_decay=0.00004,
batch_norm_var_collection='moving_vars',
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001,
updates_collections=ops.GraphKeys.UPDATE_OPS,
use_fused_batchnorm=True):
"""Defines the default InceptionV3 arg scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
batch_norm_decay: Decay for batch norm moving average
batch_norm_epsilon: Small float added to variance to avoid division by zero
updates_collections: Collections for the update ops of the layer
use_fused_batchnorm: Enable fused batchnorm.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
# collection containing update_ops.
'updates_collections': updates_collections,
# Use fused batch norm if possible.
'fused': use_fused_batchnorm,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
示例12: custom_op
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def custom_op(op: Union[CustomOp, CompilableOp, TFCompiledOp], stateful=True, name=None,
use_autodiff=False, compile_only=False, return_handle=False):
"""
Registers a custom Tensorflow operator from `CustomOp`,
`CompilableOp`, or `TFCompiledOp` objects.
@param op The custom operator. If numpy is not used, automatic
differentiation via Tensorflow applies.
@param stateful True if the operation is not a pure function (enables
sub-expression elimination optimizations if False).
@param name Specify a custom name for this operation.
@param use_autodiff If true, uses tensorflow tensors, otherwise
assumes numpy arrays.
@param compile_only If true, returns a TFCompiledOp instead of an instantiated op
@param return_handle (for C++ ops) If true, also returns a direct handle
to the operator object and library as a 3-tuple:
(operator, library, handle).
@return A tf.Operation object (or a function) that calls the custom operator.
"""
if isinstance(op, CompilableOp):
result = _custom_cpp_op(op, stateful, name)
if compile_only:
return result
else:
op = result
if isinstance(op, TFCompiledOp):
result = _create_op_handle(op)
if return_handle:
return result
else:
return result[0]
elif isinstance(op, CustomOp):
if use_autodiff == True:
return op.forward
def _fwd(*inputs):
return op.forward(*inputs)
def _bwd(tfop, *grads):
def _actual_bwd(*args):
return op.backward(args[:len(grads)],
args[len(grads):(len(grads)+len(tfop.inputs))],
args[(len(grads)+len(tfop.inputs)):])
return tf.py_func(_actual_bwd,
(list(grads) + list(tfop.inputs) + list(tfop.outputs)),
[inp.dtype for inp in op.input_descriptors],
stateful=stateful)
# Gradient replacement adapted from https://gist.github.com/harpone/3453185b41d8d985356cbe5e57d67342
# Generate a unique name to avoid duplicates
rnd_name = 'PyFuncGrad' + str(np.random.randint(0, 1E+8))
tf.RegisterGradient(rnd_name)(_bwd)
def result(*inputs):
g = tf.get_default_graph()
with g.gradient_override_map({"PyFunc": rnd_name, "PyFuncStateless": rnd_name}):
return tf.py_func(_fwd, inputs,
[out.dtype for out in op.output_descriptors],
stateful=stateful, name=name)
return result
示例13: batch_norm_new
# 需要导入模块: from tensorflow.python import framework [as 别名]
# 或者: from tensorflow.python.framework import ops [as 别名]
def batch_norm_new(name, input_var, is_train, decay=0.999, epsilon=1e-5):
"""Batch normalization modified from BatchNormLayer in Tensorlayer.
Source: <https://github.com/zsdonghao/tensorlayer/blob/master/tensorlayer/layers.py#L2190>
"""
inputs_shape = input_var.get_shape()
axis = list(range(len(inputs_shape) - 1))
params_shape = inputs_shape[-1:]
with tf.variable_scope(name) as scope:
# Trainable beta and gamma variables
beta = tf.get_variable('beta',
shape=params_shape,
initializer=tf.zeros_initializer)
gamma = tf.get_variable('gamma',
shape=params_shape,
initializer=tf.random_normal_initializer(mean=1.0, stddev=0.002))
# Moving mean and variance updated during training
moving_mean = tf.get_variable('moving_mean',
params_shape,
initializer=tf.zeros_initializer,
trainable=False)
moving_variance = tf.get_variable('moving_variance',
params_shape,
initializer=tf.constant_initializer(1.),
trainable=False)
# Compute mean and variance along axis
batch_mean, batch_variance = tf.nn.moments(input_var, axis, name='moments')
# Define ops to update moving_mean and moving_variance
update_moving_mean = moving_averages.assign_moving_average(moving_mean, batch_mean, decay, zero_debias=False)
update_moving_variance = moving_averages.assign_moving_average(moving_variance, batch_variance, decay, zero_debias=False)
# Define a function that :
# 1. Update moving_mean & moving_variance with batch_mean & batch_variance
# 2. Then return the batch_mean & batch_variance
def mean_var_with_update():
with tf.control_dependencies([update_moving_mean, update_moving_variance]):
return tf.identity(batch_mean), tf.identity(batch_variance)
# Perform different ops for training and testing
if is_train:
mean, variance = mean_var_with_update()
normed = tf.nn.batch_normalization(input_var, mean, variance, beta, gamma, epsilon)
else:
normed = tf.nn.batch_normalization(input_var, moving_mean, moving_variance, beta, gamma, epsilon)
# mean, variance = tf.cond(
# is_train,
# mean_var_with_update, # Training
# lambda: (moving_mean, moving_variance) # Testing - it will use the moving_mean and moving_variance (fixed during test) that are computed during training
# )
# normed = tf.nn.batch_normalization(input_var, mean, variance, beta, gamma, epsilon)
return normed