当前位置: 首页>>代码示例>>Python>>正文


Python ops.get_stats_for_node_def方法代码示例

本文整理汇总了Python中tensorflow.python.framework.ops.get_stats_for_node_def方法的典型用法代码示例。如果您正苦于以下问题:Python ops.get_stats_for_node_def方法的具体用法?Python ops.get_stats_for_node_def怎么用?Python ops.get_stats_for_node_def使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.get_stats_for_node_def方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _flops

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def _flops(op):
  """Get the number of flops of a convolution, from the ops stats registry.

  Args:
    op: A tf.Operation object.

  Returns:
    The number os flops needed to evaluate conv_op.
  """
  return ops.get_stats_for_node_def(
      tf.get_default_graph(), op.node_def, 'flops').value 
开发者ID:google-research,项目名称:morph-net,代码行数:13,代码来源:resource_function_test.py

示例2: testSimpleStatistics

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def testSimpleStatistics(self):
    g = tf.Graph()
    with g.as_default():
      a = tf.Variable(tf.random_normal([25, 16]))
      b = tf.Variable(tf.random_normal([16, 9]))
      tf.matmul(a, b)
      for op in g.get_operations():
        flops = ops.get_stats_for_node_def(g, op.node_def, "flops").value
        if op.name == "MatMul":
          self.assertEqual(7200, flops) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:12,代码来源:matmul_op_test.py

示例3: testTransposedStatistics

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def testTransposedStatistics(self):
    g = tf.Graph()
    with g.as_default():
      a = tf.Variable(tf.random_normal([16, 25]))
      b = tf.Variable(tf.random_normal([16, 9]))
      tf.matmul(a, b, transpose_a=True)
      for op in g.get_operations():
        flops = ops.get_stats_for_node_def(g, op.node_def, "flops").value
        if op.name == "MatMul":
          self.assertEqual(7200, flops) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:12,代码来源:matmul_op_test.py

示例4: testRegisteredNode

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def testRegisteredNode(self):
    graph = ops.Graph()
    node = ops._NodeDef("a", "an_a")
    flops = ops.get_stats_for_node_def(graph, node, "flops")
    self.assertEqual(20, flops.value)
    missing_stat = ops.get_stats_for_node_def(graph, node, "missing_stat")
    self.assertEqual(None, missing_stat.value) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:ops_test.py

示例5: testUnregisteredNode

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def testUnregisteredNode(self):
    graph = ops.Graph()
    node = ops._NodeDef("b", "a_b")
    weight_params = ops.get_stats_for_node_def(graph, node, "weight_params")
    self.assertEqual(None, weight_params.value) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:7,代码来源:ops_test.py

示例6: _get_logged_ops

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def _get_logged_ops(graph, run_meta=None):
  """Extract trainable model parameters and FLOPs for ops from a Graph.

  Args:
    graph: tf.Graph.
    run_meta: RunMetadata proto used to complete shape information.
  Returns:
    logged_ops: dict mapping from op_name to OpLogEntry.
  """
  if run_meta:
    graph = _fill_missing_graph_shape(graph, run_meta)

  logged_ops = {}
  graph_def = graph.as_graph_def()
  for node in graph_def.node:
    try:
      stats = ops.get_stats_for_node_def(graph, node, REGISTERED_FLOP_STATS)
    except ValueError:
      # Catch Exception When shape is incomplete. Skip it.
      stats = None

    if not stats or not stats.value:
      continue
    if node.name not in logged_ops:
      entry = tfprof_log_pb2.OpLogEntry()
      entry.name = node.name
      entry.float_ops = int(stats.value)
      logged_ops[entry.name] = entry

  for v in graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
    if v.op.name not in logged_ops:
      entry = tfprof_log_pb2.OpLogEntry()
      entry.name = v.op.name
      entry.types.append(TRAINABLE_VARIABLES)
      logged_ops[entry.name] = entry
    else:
      logged_ops[v.op.name].types.append(TRAINABLE_VARIABLES)
  return logged_ops 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:40,代码来源:tfprof_logger.py

示例7: calculate_graph_metrics

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def calculate_graph_metrics(graph_def, statistic_types, input_layer,
                            input_shape_override, batch_size):
  """Looks at the performance statistics of all nodes in the graph."""
  _ = tf.import_graph_def(graph_def, name="")
  total_stats = {}
  node_stats = {}
  for statistic_type in statistic_types:
    total_stats[statistic_type] = ops.OpStats(statistic_type)
    node_stats[statistic_type] = {}
  # Make sure we get pretty-printed numbers with separators.
  locale.setlocale(locale.LC_ALL, "")
  with tf.Session() as sess:
    input_tensor = sess.graph.get_tensor_by_name(input_layer)
    input_shape_tensor = input_tensor.get_shape()
    if input_shape_tensor:
      input_shape = input_shape_tensor.as_list()
    else:
      input_shape = None
    if input_shape_override:
      input_shape = input_shape_override
    if input_shape is None:
      raise ValueError("""No input shape was provided on the command line,"""
                       """ and the input op itself had no default shape, so"""
                       """ shape inference couldn't be performed. This is"""
                       """ required for metrics calculations.""")
    input_shape[0] = batch_size
    input_tensor.set_shape(input_shape)
    for node in graph_def.node:
      # Ensure that the updated input shape has been fully-propagated before we
      # ask for the statistics, since they may depend on the output size.
      op = sess.graph.get_operation_by_name(node.name)
      ops.set_shapes_for_outputs(op)
      for statistic_type in statistic_types:
        current_stats = ops.get_stats_for_node_def(sess.graph, node,
                                                   statistic_type)
        node_stats[statistic_type][node.name] = current_stats
        total_stats[statistic_type] += current_stats
  return total_stats, node_stats 
开发者ID:yselivonchyk,项目名称:TensorFlow_DCIGN,代码行数:40,代码来源:graph_metrics.py

示例8: _flops

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def _flops(op):
  """Get the number of flops of a convolution, from the ops stats registry.

  Args:
    op: A tf.Operation object.

  Returns:
    The number os flops needed to evaluate conv_op.
  """
  return (ops.get_stats_for_node_def(tf.get_default_graph(), op.node_def,
                                     'flops').value) 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:13,代码来源:bilinear_cost_utils_test.py

示例9: _get_logged_ops

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def _get_logged_ops(graph, run_meta=None, add_trace=True):
  """Extract trainable model parameters and FLOPs for ops from a Graph.

  Args:
    graph: tf.Graph.
    run_meta: RunMetadata proto used to complete shape information.
    add_trace: Whether to add op trace information.
  Returns:
    logged_ops: dict mapping from op_name to OpLogEntry.
  """
  if run_meta:
    graph = _fill_missing_graph_shape(graph, run_meta)

  op_missing_shape = 0
  logged_ops = {}
  for op in graph.get_operations():
    try:
      stats = ops.get_stats_for_node_def(
          graph, op.node_def, REGISTERED_FLOP_STATS)
    except ValueError:
      # Catch Exception When shape is incomplete. Skip it.
      op_missing_shape += 1
      stats = None

    entry = tfprof_log_pb2.OpLogEntry()
    entry.name = op.name
    add_entry = False
    if stats and stats.value:
      entry.float_ops = int(stats.value)
      add_entry = True

    if add_trace:
      for tb in op.traceback:
        trace = entry.code_def.traces.add()
        trace.file = tb[0] if tb[0] else 'none'
        trace.lineno = tb[1] if tb[1] else -1
        trace.function = tb[2] if tb[2] else 'none'
        trace.line = tb[3] if tb[3] else 'none'
      add_entry = True

    if add_entry:
      logged_ops[entry.name] = entry

  for v in graph.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES):
    if v.op.name not in logged_ops:
      entry = tfprof_log_pb2.OpLogEntry()
      entry.name = v.op.name
      entry.types.append(TRAINABLE_VARIABLES)
      logged_ops[entry.name] = entry
    else:
      logged_ops[v.op.name].types.append(TRAINABLE_VARIABLES)
  if op_missing_shape > 0 and not run_meta:
    sys.stderr.write('%d ops no flops stats due to incomplete shapes. '
                     'Consider passing run_meta to use run_time shapes.\n' %
                     op_missing_shape)
  return logged_ops 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:58,代码来源:tfprof_logger.py

示例10: _get_logged_ops

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import get_stats_for_node_def [as 别名]
def _get_logged_ops(graph, run_meta=None):
  """Extract trainable model parameters and FLOPs for ops from a Graph.

  Args:
    graph: tf.Graph.
    run_meta: RunMetadata proto used to complete shape information.
  Returns:
    logged_ops: dict mapping from op_name to OpLogEntry.
  """
  if run_meta:
    graph = _fill_missing_graph_shape(graph, run_meta)

  op_missing_shape = 0
  logged_ops = {}
  graph_def = graph.as_graph_def()
  for node in graph_def.node:
    try:
      stats = ops.get_stats_for_node_def(graph, node, REGISTERED_FLOP_STATS)
    except ValueError:
      # Catch Exception When shape is incomplete. Skip it.
      op_missing_shape += 1
      stats = None

    if not stats or not stats.value:
      continue
    if node.name not in logged_ops:
      entry = tfprof_log_pb2.OpLogEntry()
      entry.name = node.name
      entry.float_ops = int(stats.value)
      logged_ops[entry.name] = entry

  for v in graph.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES):
    if v.op.name not in logged_ops:
      entry = tfprof_log_pb2.OpLogEntry()
      entry.name = v.op.name
      entry.types.append(TRAINABLE_VARIABLES)
      logged_ops[entry.name] = entry
    else:
      logged_ops[v.op.name].types.append(TRAINABLE_VARIABLES)
  if op_missing_shape > 0 and not run_meta:
    sys.stderr.write('%d ops no flops stats due to incomplete shapes. '
                     'Consider passing run_meta to use run_time shapes.\n' %
                     op_missing_shape)
  return logged_ops 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:46,代码来源:tfprof_logger.py


注:本文中的tensorflow.python.framework.ops.get_stats_for_node_def方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。