本文整理汇总了Python中tensorflow.python.framework.ops.convert_to_tensor方法的典型用法代码示例。如果您正苦于以下问题:Python ops.convert_to_tensor方法的具体用法?Python ops.convert_to_tensor怎么用?Python ops.convert_to_tensor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.convert_to_tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: shape_list
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def shape_list(x):
"""Return list of dims, statically where possible."""
x = tf.convert_to_tensor(x)
# If unknown rank, return dynamic shape
if x.get_shape().dims is None:
return tf.shape(x)
static = x.get_shape().as_list()
shape = tf.shape(x)
ret = []
for i in range(len(static)):
dim = static[i]
if dim is None:
dim = shape[i]
ret.append(dim)
return ret
示例2: __init__
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def __init__(self, sample_fn, sample_shape, sample_dtype,
start_inputs, end_fn, next_inputs_fn=None):
"""Initializer.
Args:
sample_fn: A callable that takes `outputs` and emits tensor `sample_ids`.
sample_shape: Either a list of integers, or a 1-D Tensor of type `int32`,
the shape of the each sample in the batch returned by `sample_fn`.
sample_dtype: the dtype of the sample returned by `sample_fn`.
start_inputs: The initial batch of inputs.
end_fn: A callable that takes `sample_ids` and emits a `bool` vector
shaped `[batch_size]` indicating whether each sample is an end token.
next_inputs_fn: (Optional) A callable that takes `sample_ids` and returns
the next batch of inputs. If not provided, `sample_ids` is used as the
next batch of inputs.
"""
self._sample_fn = sample_fn
self._end_fn = end_fn
self._sample_shape = tensor_shape.TensorShape(sample_shape)
self._sample_dtype = sample_dtype
self._next_inputs_fn = next_inputs_fn
self._batch_size = array_ops.shape(start_inputs)[0]
self._start_inputs = ops.convert_to_tensor(
start_inputs, name="start_inputs")
示例3: shape_list
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def shape_list(x):
"""Returns **static** shape of the input Tensor whenever possible.
Args:
x: A Tensor.
Returns:
- If the rank of :attr:`x` is unknown, returns the dynamic shape: \
`tf.shape(x)`
- Otherwise, returns a list of dims, each of which is either an `int` \
whenever it can be statically determined, or a scalar Tensor otherwise.
"""
x = tf.convert_to_tensor(x)
# If unknown rank, return dynamic shape
if x.get_shape().dims is None:
return tf.shape(x)
static = x.get_shape().as_list()
shape = tf.shape(x)
ret = []
for i, dim in enumerate(static):
if dim is None:
dim = shape[i]
ret.append(dim)
return ret
示例4: binary_cross_entropy
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
示例5: dense_to_sparse
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
"""Converts a dense tensor into a sparse tensor.
An example use would be to convert dense labels to sparse ones
so that they can be fed to the ctc_loss.
Args:
tensor: An `int` `Tensor` to be converted to a `Sparse`.
eos_token: An integer. It is part of the target label that signifies the
end of a sentence.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
"""
with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
tensor = ops.convert_to_tensor(tensor)
indices = array_ops.where(
math_ops.not_equal(tensor, constant_op.constant(eos_token,
tensor.dtype)))
values = array_ops.gather_nd(tensor, indices)
shape = array_ops.shape(tensor, out_type=dtypes.int64)
outputs = sparse_tensor.SparseTensor(indices, values, shape)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
示例6: flatten
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def flatten(inputs, outputs_collections=None, scope=None):
"""Flattens the input while maintaining the batch_size.
Assumes that the first dimension represents the batch.
Args:
inputs: A tensor of size [batch_size, ...].
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
Returns:
A flattened tensor with shape [batch_size, k].
Raises:
ValueError: If inputs rank is unknown or less than 2.
"""
with ops.name_scope(scope, 'Flatten', [inputs]) as sc:
inputs = ops.convert_to_tensor(inputs)
outputs = core_layers.flatten(inputs)
return utils.collect_named_outputs(outputs_collections, sc, outputs)
示例7: _lower_bound
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def _lower_bound(inputs, bound, name=None):
"""Same as tf.maximum, but with helpful gradient for inputs < bound.
The gradient is overwritten so that it is passed through if the input is not
hitting the bound. If it is, only gradients that push `inputs` higher than
the bound are passed through. No gradients are passed through to the bound.
Args:
inputs: input tensor
bound: lower bound for the input tensor
name: name for this op
Returns:
tf.maximum(inputs, bound)
"""
with ops.name_scope(name, 'GDNLowerBound', [inputs, bound]) as scope:
inputs = ops.convert_to_tensor(inputs, name='inputs')
bound = ops.convert_to_tensor(bound, name='bound')
with ops.get_default_graph().gradient_override_map(
{'Maximum': 'GDNLowerBound'}):
return math_ops.maximum(inputs, bound, name=scope)
示例8: _tile_batch
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def _tile_batch(t, multiplier):
"""Core single-tensor implementation of tile_batch."""
t = ops.convert_to_tensor(t, name="t")
shape_t = tf.shape(t)
if t.shape.ndims is None or t.shape.ndims < 1:
raise ValueError("t must have statically known rank")
tiling = [1] * (t.shape.ndims + 1)
tiling[1] = multiplier
tiled_static_batch_size = (
t.shape[0].value * multiplier if t.shape[0].value is not None else None)
tiled = tf.tile(tf.expand_dims(t, 1), tiling)
tiled = tf.reshape(
tiled, tf.concat(([shape_t[0] * multiplier], shape_t[1:]), 0))
tiled.set_shape(
tensor_shape.TensorShape(
[tiled_static_batch_size]).concatenate(t.shape[1:]))
return tiled
开发者ID:hirofumi0810,项目名称:tensorflow_end2end_speech_recognition,代码行数:19,代码来源:beam_search_decoder_from_tensorflow.py
示例9: random_flip_left_right
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def random_flip_left_right(image, bboxes, seed=None):
"""Random flip left-right of an image and its bounding boxes.
"""
def flip_bboxes(bboxes):
"""Flip bounding boxes coordinates.
"""
bboxes = tf.stack([bboxes[:, 0], 1 - bboxes[:, 3],
bboxes[:, 2], 1 - bboxes[:, 1]], axis=-1)
return bboxes
# Random flip. Tensorflow implementation.
with tf.name_scope('random_flip_left_right'):
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
mirror_cond = math_ops.less(uniform_random, .5)
# Flip image.
result = control_flow_ops.cond(mirror_cond,
lambda: array_ops.reverse_v2(image, [1]),
lambda: image)
# Flip bboxes.
bboxes = control_flow_ops.cond(mirror_cond,
lambda: flip_bboxes(bboxes),
lambda: bboxes)
return fix_image_flip_shape(image, result), bboxes
示例10: binary_cross_entropy
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
示例11: set_global_step
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def set_global_step(self, new_global_step, name=None):
"""Sets the global time step of the accumulator.
The operation logs a warning if we attempt to set to a time step that is
lower than the accumulator's own time step.
Args:
new_global_step: Value of new time step. Can be a variable or a constant
name: Optional name for the operation.
Returns:
Operation that sets the accumulator's time step.
"""
return gen_data_flow_ops.accumulator_set_global_step(
self._accumulator_ref,
math_ops.to_int64(ops.convert_to_tensor(new_global_step)),
name=name)
示例12: apply_grad
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def apply_grad(self, grad, local_step=0, name=None):
"""Attempts to apply a gradient to the accumulator.
The attempt is silently dropped if the gradient is stale, i.e., local_step
is less than the accumulator's global time step.
Args:
grad: The gradient tensor to be applied.
local_step: Time step at which the gradient was computed.
name: Optional name for the operation.
Returns:
The operation that (conditionally) applies a gradient to the accumulator.
Raises:
ValueError: If grad is of the wrong shape
"""
grad = ops.convert_to_tensor(grad, self._dtype)
grad.get_shape().assert_is_compatible_with(self._shape)
local_step = math_ops.to_int64(ops.convert_to_tensor(local_step))
return gen_data_flow_ops.accumulator_apply_gradient(
self._accumulator_ref, local_step=local_step, gradient=grad, name=name)
示例13: shape_internal
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin
"""Returns the shape of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the shape as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Shape", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops.cast(input.dense_shape, out_type)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.as_list(), out_type, name=name)
return gen_array_ops.shape(input, name=name, out_type=out_type)
示例14: size_internal
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
示例15: rank_internal
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def rank_internal(input, name=None, optimize=True):
# pylint: disable=redefined-builtin
"""Returns the rank of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the rank as a constant when possible.
Returns:
A `Tensor` of type `int32`.
"""
with ops.name_scope(name, "Rank", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_array_ops.size(input.dense_shape, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.ndims is not None:
return constant(input_shape.ndims, dtypes.int32, name=name)
return gen_array_ops.rank(input, name=name)