当前位置: 首页>>代码示例>>Python>>正文


Python ops.convert_to_tensor方法代码示例

本文整理汇总了Python中tensorflow.python.framework.ops.convert_to_tensor方法的典型用法代码示例。如果您正苦于以下问题:Python ops.convert_to_tensor方法的具体用法?Python ops.convert_to_tensor怎么用?Python ops.convert_to_tensor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.convert_to_tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: shape_list

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def shape_list(x):
  """Return list of dims, statically where possible."""
  x = tf.convert_to_tensor(x)

  # If unknown rank, return dynamic shape
  if x.get_shape().dims is None:
    return tf.shape(x)

  static = x.get_shape().as_list()
  shape = tf.shape(x)

  ret = []
  for i in range(len(static)):
    dim = static[i]
    if dim is None:
      dim = shape[i]
    ret.append(dim)
  return ret 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:20,代码来源:common_layers.py

示例2: __init__

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def __init__(self, sample_fn, sample_shape, sample_dtype,
                 start_inputs, end_fn, next_inputs_fn=None):
        """Initializer.

        Args:
          sample_fn: A callable that takes `outputs` and emits tensor `sample_ids`.
          sample_shape: Either a list of integers, or a 1-D Tensor of type `int32`,
            the shape of the each sample in the batch returned by `sample_fn`.
          sample_dtype: the dtype of the sample returned by `sample_fn`.
          start_inputs: The initial batch of inputs.
          end_fn: A callable that takes `sample_ids` and emits a `bool` vector
            shaped `[batch_size]` indicating whether each sample is an end token.
          next_inputs_fn: (Optional) A callable that takes `sample_ids` and returns
            the next batch of inputs. If not provided, `sample_ids` is used as the
            next batch of inputs.
        """
        self._sample_fn = sample_fn
        self._end_fn = end_fn
        self._sample_shape = tensor_shape.TensorShape(sample_shape)
        self._sample_dtype = sample_dtype
        self._next_inputs_fn = next_inputs_fn
        self._batch_size = array_ops.shape(start_inputs)[0]
        self._start_inputs = ops.convert_to_tensor(
            start_inputs, name="start_inputs") 
开发者ID:qkaren,项目名称:Counterfactual-StoryRW,代码行数:26,代码来源:tf_helpers.py

示例3: shape_list

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def shape_list(x):
    """Returns **static** shape of the input Tensor whenever possible.

    Args:
        x: A Tensor.

    Returns:
        - If the rank of :attr:`x` is unknown, returns the dynamic shape: \
        `tf.shape(x)`
        - Otherwise, returns a list of dims, each of which is either an `int` \
        whenever it can be statically determined, or a scalar Tensor otherwise.
    """
    x = tf.convert_to_tensor(x)
    # If unknown rank, return dynamic shape
    if x.get_shape().dims is None:
        return tf.shape(x)
    static = x.get_shape().as_list()
    shape = tf.shape(x)
    ret = []
    for i, dim in enumerate(static):
        if dim is None:
            dim = shape[i]
        ret.append(dim)
    return ret 
开发者ID:qkaren,项目名称:Counterfactual-StoryRW,代码行数:26,代码来源:shapes.py

示例4: binary_cross_entropy

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def binary_cross_entropy(preds, targets, name=None):
    """Computes binary cross entropy given `preds`.

    For brevity, let `x = `, `z = targets`.  The logistic loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Args:
        preds: A `Tensor` of type `float32` or `float64`.
        targets: A `Tensor` of the same type and shape as `preds`.
    """
    eps = 1e-12
    with ops.op_scope([preds, targets], name, "bce_loss") as name:
        preds = ops.convert_to_tensor(preds, name="preds")
        targets = ops.convert_to_tensor(targets, name="targets")
        return tf.reduce_mean(-(targets * tf.log(preds + eps) +
                              (1. - targets) * tf.log(1. - preds + eps))) 
开发者ID:djsutherland,项目名称:opt-mmd,代码行数:19,代码来源:ops.py

示例5: dense_to_sparse

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
  """Converts a dense tensor into a sparse tensor.

  An example use would be to convert dense labels to sparse ones
  so that they can be fed to the ctc_loss.

  Args:
     tensor: An `int` `Tensor` to be converted to a `Sparse`.
     eos_token: An integer. It is part of the target label that signifies the
       end of a sentence.
     outputs_collections: Collection to add the outputs.
     scope: Optional scope for name_scope.
  """
  with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
    tensor = ops.convert_to_tensor(tensor)
    indices = array_ops.where(
        math_ops.not_equal(tensor, constant_op.constant(eos_token,
                                                        tensor.dtype)))
    values = array_ops.gather_nd(tensor, indices)
    shape = array_ops.shape(tensor, out_type=dtypes.int64)
    outputs = sparse_tensor.SparseTensor(indices, values, shape)
    return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:24,代码来源:layers.py

示例6: flatten

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def flatten(inputs, outputs_collections=None, scope=None):
  """Flattens the input while maintaining the batch_size.

    Assumes that the first dimension represents the batch.

  Args:
    inputs: A tensor of size [batch_size, ...].
    outputs_collections: Collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    A flattened tensor with shape [batch_size, k].
  Raises:
    ValueError: If inputs rank is unknown or less than 2.
  """
  with ops.name_scope(scope, 'Flatten', [inputs]) as sc:
    inputs = ops.convert_to_tensor(inputs)
    outputs = core_layers.flatten(inputs)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:21,代码来源:layers.py

示例7: _lower_bound

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def _lower_bound(inputs, bound, name=None):
    """Same as tf.maximum, but with helpful gradient for inputs < bound.

    The gradient is overwritten so that it is passed through if the input is not
    hitting the bound. If it is, only gradients that push `inputs` higher than
    the bound are passed through. No gradients are passed through to the bound.

    Args:
      inputs: input tensor
      bound: lower bound for the input tensor
      name: name for this op

    Returns:
      tf.maximum(inputs, bound)
    """
    with ops.name_scope(name, 'GDNLowerBound', [inputs, bound]) as scope:
      inputs = ops.convert_to_tensor(inputs, name='inputs')
      bound = ops.convert_to_tensor(bound, name='bound')
      with ops.get_default_graph().gradient_override_map(
          {'Maximum': 'GDNLowerBound'}):
        return math_ops.maximum(inputs, bound, name=scope) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:23,代码来源:layers.py

示例8: _tile_batch

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def _tile_batch(t, multiplier):
    """Core single-tensor implementation of tile_batch."""
    t = ops.convert_to_tensor(t, name="t")
    shape_t = tf.shape(t)
    if t.shape.ndims is None or t.shape.ndims < 1:
        raise ValueError("t must have statically known rank")
    tiling = [1] * (t.shape.ndims + 1)
    tiling[1] = multiplier
    tiled_static_batch_size = (
        t.shape[0].value * multiplier if t.shape[0].value is not None else None)
    tiled = tf.tile(tf.expand_dims(t, 1), tiling)
    tiled = tf.reshape(
        tiled, tf.concat(([shape_t[0] * multiplier], shape_t[1:]), 0))
    tiled.set_shape(
        tensor_shape.TensorShape(
            [tiled_static_batch_size]).concatenate(t.shape[1:]))
    return tiled 
开发者ID:hirofumi0810,项目名称:tensorflow_end2end_speech_recognition,代码行数:19,代码来源:beam_search_decoder_from_tensorflow.py

示例9: random_flip_left_right

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def random_flip_left_right(image, bboxes, seed=None):
    """Random flip left-right of an image and its bounding boxes.
    """
    def flip_bboxes(bboxes):
        """Flip bounding boxes coordinates.
        """
        bboxes = tf.stack([bboxes[:, 0], 1 - bboxes[:, 3],
                           bboxes[:, 2], 1 - bboxes[:, 1]], axis=-1)
        return bboxes

    # Random flip. Tensorflow implementation.
    with tf.name_scope('random_flip_left_right'):
        image = ops.convert_to_tensor(image, name='image')
        _Check3DImage(image, require_static=False)
        uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
        mirror_cond = math_ops.less(uniform_random, .5)
        # Flip image.
        result = control_flow_ops.cond(mirror_cond,
                                       lambda: array_ops.reverse_v2(image, [1]),
                                       lambda: image)
        # Flip bboxes.
        bboxes = control_flow_ops.cond(mirror_cond,
                                       lambda: flip_bboxes(bboxes),
                                       lambda: bboxes)
        return fix_image_flip_shape(image, result), bboxes 
开发者ID:dengdan,项目名称:seglink,代码行数:27,代码来源:tf_image.py

示例10: binary_cross_entropy

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def binary_cross_entropy(preds, targets, name=None):
	"""Computes binary cross entropy given `preds`.

	For brevity, let `x = `, `z = targets`.  The logistic loss is

		loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

	Args:
		preds: A `Tensor` of type `float32` or `float64`.
		targets: A `Tensor` of the same type and shape as `preds`.
	"""
	eps = 1e-12
	with ops.op_scope([preds, targets], name, "bce_loss") as name:
		preds = ops.convert_to_tensor(preds, name="preds")
		targets = ops.convert_to_tensor(targets, name="targets")
		return tf.reduce_mean(-(targets * tf.log(preds + eps) +
							  (1. - targets) * tf.log(1. - preds + eps))) 
开发者ID:paarthneekhara,项目名称:text-to-image,代码行数:19,代码来源:ops.py

示例11: set_global_step

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def set_global_step(self, new_global_step, name=None):
    """Sets the global time step of the accumulator.

    The operation logs a warning if we attempt to set to a time step that is
    lower than the accumulator's own time step.

    Args:
      new_global_step: Value of new time step. Can be a variable or a constant
      name: Optional name for the operation.

    Returns:
      Operation that sets the accumulator's time step.
    """
    return gen_data_flow_ops.accumulator_set_global_step(
        self._accumulator_ref,
        math_ops.to_int64(ops.convert_to_tensor(new_global_step)),
        name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:19,代码来源:data_flow_ops.py

示例12: apply_grad

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def apply_grad(self, grad, local_step=0, name=None):
    """Attempts to apply a gradient to the accumulator.

    The attempt is silently dropped if the gradient is stale, i.e., local_step
    is less than the accumulator's global time step.

    Args:
      grad: The gradient tensor to be applied.
      local_step: Time step at which the gradient was computed.
      name: Optional name for the operation.

    Returns:
      The operation that (conditionally) applies a gradient to the accumulator.

    Raises:
      ValueError: If grad is of the wrong shape
    """
    grad = ops.convert_to_tensor(grad, self._dtype)
    grad.get_shape().assert_is_compatible_with(self._shape)
    local_step = math_ops.to_int64(ops.convert_to_tensor(local_step))
    return gen_data_flow_ops.accumulator_apply_gradient(
        self._accumulator_ref, local_step=local_step, gradient=grad, name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:24,代码来源:data_flow_ops.py

示例13: shape_internal

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the shape as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.

  """
  with ops.name_scope(name, "Shape", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops.cast(input.dense_shape, out_type)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.as_list(), out_type, name=name)
      return gen_array_ops.shape(input, name=name, out_type=out_type) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:27,代码来源:array_ops.py

示例14: size_internal

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin,protected-access
  """Returns the size of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the size as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.
  """
  with ops.name_scope(name, "Size", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops._prod(
          gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.num_elements(), out_type, name=name)
      return gen_array_ops.size(input, name=name, out_type=out_type) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:27,代码来源:array_ops.py

示例15: rank_internal

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import convert_to_tensor [as 别名]
def rank_internal(input, name=None, optimize=True):
  # pylint: disable=redefined-builtin
  """Returns the rank of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the rank as a constant when possible.

  Returns:
    A `Tensor` of type `int32`.
  """
  with ops.name_scope(name, "Rank", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_array_ops.size(input.dense_shape, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.ndims is not None:
        return constant(input_shape.ndims, dtypes.int32, name=name)
      return gen_array_ops.rank(input, name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:24,代码来源:array_ops.py


注:本文中的tensorflow.python.framework.ops.convert_to_tensor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。