当前位置: 首页>>代码示例>>Python>>正文


Python ops.colocate方法代码示例

本文整理汇总了Python中tensorflow.python.framework.ops.colocate方法的典型用法代码示例。如果您正苦于以下问题:Python ops.colocate方法的具体用法?Python ops.colocate怎么用?Python ops.colocate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.colocate方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _SwitchRefOrTensor

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import colocate [as 别名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
  """Forwards `data` to an output determined by `pred`.

  If `pred` is false, the `data` input is forwared to the first output.
  Otherwise, the data goes to the second output.

  This op handles `Tensor`s and `IndexedSlices`.

  Args:
    data: The tensor to be forwarded to the appropriate output.
    pred: A scalar that specifies which output port will receive data.
    name: A name for this operation (optional).

  Returns:
    `(output_false, output_true)`: If `pred` is true, data will be forwarded to
    `output_true`, otherwise it goes to `output_false`.

  Raises:
    TypeError: if data is not a Tensor or IndexedSlices
  """
  data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
  # NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
  # addresses the following scenario.
  #
  # Assume you execute Optimizer.apply_gradients() in a branch of a cond().
  #
  # 1. The update op is created inside a `with ops.colocate(var):` block
  #
  # 2. Some tensor `data` is captured and a switch is created in a
  #    `with ops.colocate_with(data):` block.
  #
  # with ops.colocate_with(var):
  #  with ops.colocate_with(data):
  #    op = ...
  #
  # var and data may be pinned to different devices, so we want to ops
  # created within ops.colocate_with(data) to ignore the existing stack.
  with ops.colocate_with(data, ignore_existing=True):
    if isinstance(data, ops.Tensor):
      if data.dtype._is_ref_dtype:  # pylint: disable=protected-access
        return ref_switch(data, pred, name=name)
    return switch(data, pred, name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:44,代码来源:control_flow_ops.py

示例2: _SwitchRefOrTensor

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import colocate [as 别名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
  """Forwards `data` to an output determined by `pred`.

  If `pred` is true, the `data` input is forwared to the first output.
  Otherwise, the data goes to the second output.

  This op handles `Tensor`s and `IndexedSlices`.

  Args:
    data: The tensor to be forwarded to the appropriate output.
    pred: A scalar that specifies which output port will receive data.
    name: A name for this operation (optional).

  Returns:
    `(output_false, output_false)`: If `pred` is true, data will be forwarded to
    `output_true`, otherwise it goes to `output_false`.

  Raises:
    TypeError: if data is not a Tensor or IndexedSlices
  """
  data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
  # NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
  # addresses the following scenario.
  #
  # Assume you execute Optimizer.apply_gradients() in a branch of a cond().
  #
  # 1. The update op is created inside a `with ops.colocate(var):` block
  #
  # 2. Some tensor `data` is captured and a switch is created in a
  #    `with ops.colocate_with(data):` block.
  #
  # with ops.colocate_with(var):
  #  with ops.colocate_with(data):
  #    op = ...
  #
  # var and data may be pinned to different devices, so we want to ops
  # created within ops.colocate_with(data) to ignore the existing stack.
  with ops.colocate_with(data, ignore_existing=True):
    if isinstance(data, ops.Tensor):
      if data.dtype._is_ref_dtype:  # pylint: disable=protected-access
        return ref_switch(data, pred, name=name)
    return switch(data, pred, name=name) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:44,代码来源:control_flow_ops.py

示例3: _SwitchRefOrTensor

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import colocate [as 别名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
  """Forwards `data` to an output determined by `pred`.

  If `pred` is true, the `data` input is forwared to the first output.
  Otherwise, the data goes to the second output.

  This op handles `Tensor`s and `IndexedSlices`.

  Args:
    data: The tensor to be forwarded to the appropriate output.
    pred: A scalar that specifies which output port will receive data.
    name: A name for this operation (optional).

  Returns:
    `(output_false, output_false)`: If `pred` is true, data will be forwarded to
    `output_true`, otherwise it goes to `output_false`.

  Raises:
    TypeError: if data is not a Tensor or IndexedSlices
  """
  data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
  # NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
  # addresses the following scenario.
  #
  # Assume you execute Optimizer.apply_gradients() in a branch of a cond().
  #
  # 1. The update op is created inside a `with ops.colocate(var):` block
  #
  # 2. Some tensor `data` is captured and a switch is created in a
  #    `with ops.colocate_with(data):` block.
  #
  # with ops.colocate_with(var):
  #  with ops.colocate_with(data):
  #    op = ...
  #
  # var and data may be pinned to different devices, so we want to ops
  # created within ops.colocate_with(data) to ignore the existing stack.
  with ops.colocate_with(data, ignore_existing=True):
    if isinstance(data, ops.Tensor):
      if data.dtype.is_ref_dtype:
        return ref_switch(data, pred, name=name)
    return switch(data, pred, name=name) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:44,代码来源:control_flow_ops.py

示例4: _SwitchRefOrTensor

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import colocate [as 别名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
  """Forwards `data` to an output determined by `pred`.

  If `pred` is false, the `data` input is forwarded to the first output.
  Otherwise, the data goes to the second output.

  This op handles `Tensor`s and `IndexedSlices`.

  Args:
    data: The tensor to be forwarded to the appropriate output.
    pred: A scalar that specifies which output port will receive data.
    name: A name for this operation (optional).

  Returns:
    `(output_false, output_true)`: If `pred` is true, data will be forwarded to
    `output_true`, otherwise it goes to `output_false`.

  Raises:
    TypeError: if data is not a Tensor or IndexedSlices
  """
  data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
  # NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
  # addresses the following scenario.
  #
  # Assume you execute Optimizer.apply_gradients() in a branch of a cond().
  #
  # 1. The update op is created inside a `with ops.colocate(var):` block
  #
  # 2. Some tensor `data` is captured and a switch is created in a
  #    `with ops.colocate_with(data):` block.
  #
  # with ops.colocate_with(var):
  #  with ops.colocate_with(data):
  #    op = ...
  #
  # var and data may be pinned to different devices, so we want to ops
  # created within ops.colocate_with(data) to ignore the existing stack.
  with ops.colocate_with(data, ignore_existing=True):
    if isinstance(data, ops.Tensor):
      if data.dtype._is_ref_dtype:  # pylint: disable=protected-access
        return ref_switch(data, pred, name=name)
    return switch(data, pred, name=name) 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:44,代码来源:control_flow_ops.py


注:本文中的tensorflow.python.framework.ops.colocate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。