当前位置: 首页>>代码示例>>Python>>正文


Python ops._get_graph_from_inputs方法代码示例

本文整理汇总了Python中tensorflow.python.framework.ops._get_graph_from_inputs方法的典型用法代码示例。如果您正苦于以下问题:Python ops._get_graph_from_inputs方法的具体用法?Python ops._get_graph_from_inputs怎么用?Python ops._get_graph_from_inputs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops._get_graph_from_inputs方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_graph_from_inputs

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import _get_graph_from_inputs [as 别名]
def get_graph_from_inputs(op_input_list, graph=None):
  """Returns the appropriate graph to use for the given inputs.

  1. If `graph` is provided, we validate that all inputs in `op_input_list` are
     from the same graph.
  2. Otherwise, we attempt to select a graph from the first Operation- or
     Tensor-valued input in `op_input_list`, and validate that all other
     such inputs are in the same graph.
  3. If the graph was not specified and it could not be inferred from
     `op_input_list`, we attempt to use the default graph.

  Args:
    op_input_list: A list of inputs to an operation, which may include `Tensor`,
      `Operation`, and other objects that may be converted to a graph element.
    graph: (Optional) The explicit graph to use.

  Raises:
    TypeError: If `op_input_list` is not a list or tuple, or if graph is not a
      Graph.
    ValueError: If a graph is explicitly passed and not all inputs are from it,
      or if the inputs are from multiple graphs, or we could not find a graph
      and there was no default graph.

  Returns:
    The appropriate graph to use for the given inputs.
  """
  # pylint: disable=protected-access
  return ops._get_graph_from_inputs(op_input_list, graph) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:30,代码来源:ops.py

示例2: _current_graph

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import _get_graph_from_inputs [as 别名]
def _current_graph(op_input_list):
    """Return the graph members of `op_input_list`, or the current graph."""
    # pylint: disable=protected-access
    return ops._get_graph_from_inputs(op_input_list) 
开发者ID:tf-encrypted,项目名称:tf-encrypted,代码行数:6,代码来源:backend.py

示例3: graph_zeros_like

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import _get_graph_from_inputs [as 别名]
def graph_zeros_like(tensor):
  """Graph-only version of tf.zeros_like(), for internal use only."""
  g = ops._get_graph_from_inputs([tensor])  # pylint: disable=protected-access
  with g.as_default(), ops.name_scope(None, "zeros_like", [tensor]) as name:
    tensor = ops.convert_to_tensor(tensor, name="tensor")
    dtype = tensor.dtype.base_dtype
    dtype_value = attr_value_pb2.AttrValue(type=dtype.as_datatype_enum)
    op = g.create_op("ZerosLike", [tensor], [dtype], input_types=[dtype],
                     attrs={"T": dtype_value}, name=name)
  result, = op.outputs
  return result 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:13,代码来源:graph_only_ops.py

示例4: __call__

# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import _get_graph_from_inputs [as 别名]
def __call__(self, inputs, *args, **kwargs):
    """Wraps `call`, applying pre- and post-processing steps.

    Arguments:
      inputs: input tensor(s).
      *args: additional positional arguments to be passed to `self.call`.
      **kwargs: additional keyword arguments to be passed to `self.call`.
        **Note**: kwarg `scope` is reserved for use by the layer.
    Returns:
      Output tensor(s).
    """
    self._set_scope(kwargs.pop('scope', None))

    # Ensure the Layer, if being reused, is working with inputs from
    # the same graph as where it was created.
    try:
      ops._get_graph_from_inputs(nest.flatten(inputs), graph=self.graph)  # pylint: disable=protected-access
    except ValueError as e:
      raise ValueError('Input graph and Layer graph are not the same: %s' % e)

    with vs.variable_scope(self._scope,
                           reuse=self.built or self._reuse) as scope:
      with ops.name_scope(scope.original_name_scope):
        if not self.built:
          # Check input assumptions set before layer building, e.g. input rank.
          self._assert_input_compatibility(inputs)
          input_list = [
              ops.convert_to_tensor(x, name='input')
              for x in nest.flatten(inputs)]
          input_shapes = [x.get_shape() for x in input_list]
          if len(input_shapes) == 1:
            self.build(input_shapes[0])
          else:
            self.build(input_shapes)
        if 'scope' in tf_inspect.getargspec(self.call).args:
          kwargs['scope'] = scope
        # Check input assumptions set after layer building, e.g. input shape.
        self._assert_input_compatibility(inputs)
        outputs = self.call(inputs, *args, **kwargs)

        # Apply activity regularization.
        # Note that it should be applied every time the layer creates a new
        # output, since it is output-specific.
        if hasattr(self, 'activity_regularizer') and self.activity_regularizer:
          output_list = _to_list(outputs)
          for output in output_list:
            with ops.name_scope('ActivityRegularizer'):
              activity_regularization = self.activity_regularizer(output)
            self.add_loss(activity_regularization)
            _add_elements_to_collection(
                activity_regularization, ops.GraphKeys.REGULARIZATION_LOSSES)

    # Update global default collections.
    _add_elements_to_collection(self.updates, ops.GraphKeys.UPDATE_OPS)
    self.built = True
    return outputs 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:58,代码来源:base.py


注:本文中的tensorflow.python.framework.ops._get_graph_from_inputs方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。