本文整理汇总了Python中tensorflow.python.framework.ops.Operation方法的典型用法代码示例。如果您正苦于以下问题:Python ops.Operation方法的具体用法?Python ops.Operation怎么用?Python ops.Operation使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.Operation方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: is_placeholder
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def is_placeholder(self, graph_element_name):
"""Check whether a graph element is a Placeholder, by name.
Args:
graph_element_name: (str) Name of the tensor or op to be tested.
Returns:
(bool) Whether the graph element of the specified name is a Placeholder
op or the output Tensor of a Placeholder op.
Raises:
ValueError: If graph_element_name is not in the transitive closure of the
stepper instance.
"""
node_name = self._get_node_name(graph_element_name)
if node_name not in self.sorted_nodes():
raise ValueError(
"%s is not in the transitive closure of this NodeStepper "
"instance" % graph_element_name)
graph_element = self._sess.graph.as_graph_element(graph_element_name)
if not isinstance(graph_element, ops.Operation):
graph_element = graph_element.op
return graph_element.type == "Placeholder"
示例2: _get_fetch_names
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def _get_fetch_names(fetches):
"""Get a flattened list of the names in run() call fetches.
Args:
fetches: Fetches of the `Session.run()` call. It maybe a Tensor, an
Operation or a Variable. It may also be nested lists, tuples or
dicts. See doc of `Session.run()` for more details.
Returns:
(list of str) A flattened list of fetch names from `fetches`.
"""
lines = []
if isinstance(fetches, (list, tuple)):
for fetch in fetches:
lines.extend(_get_fetch_names(fetch))
elif isinstance(fetches, dict):
for key in fetches:
lines.extend(_get_fetch_names(fetches[key]))
else:
# This ought to be a Tensor, an Operation or a Variable, for which the name
# attribute should be available. (Bottom-out condition of the recursion.)
lines.append(_get_fetch_name(fetches))
return lines
示例3: _BuildCondTensor
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def _BuildCondTensor(self, v):
if isinstance(v, ops.Operation):
# Use pivot as the proxy for this op.
return with_dependencies([v], self._pivot)
elif isinstance(v, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
values = self._ProcessOutputTensor(v.values)
indices = self._ProcessOutputTensor(v.indices)
if isinstance(v, ops.IndexedSlices):
dense_shape = v.dense_shape
if dense_shape is not None:
dense_shape = self._ProcessOutputTensor(dense_shape)
return ops.IndexedSlices(values, indices, dense_shape)
else:
dense_shape = self._ProcessOutputTensor(v.dense_shape)
return sparse_tensor.SparseTensor(indices, values, dense_shape)
else:
v = nest.map_structure(_convert_tensorarray_to_flow, v)
return self._ProcessOutputTensor(ops.convert_to_tensor(v))
示例4: swap_ts
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def swap_ts(ts0, ts1, can_modify=None, cannot_modify=None):
"""For each tensor's pair, swap the end of (t0,t1).
B0 B1 B0 B1
| | => X
A0 A1 A0 A1
Args:
ts0: an object convertible to a list of `tf.Tensor`.
ts1: an object convertible to a list of `tf.Tensor`.
can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.
cannot_modify: iterable of operations which cannot be modified.
Any operation within cannot_modify will be left untouched by this
function.
Returns:
The number of individual modifications made by the function.
Raises:
TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.
TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.
"""
return _reroute_ts(ts0, ts1, _RerouteMode.swap, can_modify, cannot_modify)
示例5: reroute_ts
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def reroute_ts(ts0, ts1, can_modify=None, cannot_modify=None):
"""For each tensor's pair, replace the end of t1 by the end of t0.
B0 B1 B0 B1
| | => |/
A0 A1 A0 A1
The end of the tensors in ts1 are left dangling.
Args:
ts0: an object convertible to a list of `tf.Tensor`.
ts1: an object convertible to a list of `tf.Tensor`.
can_modify: iterable of operations which can be modified. Any operation
outside within_ops will be left untouched by this function.
cannot_modify: iterable of operations which cannot be modified. Any
operation within cannot_modify will be left untouched by this function.
Returns:
The number of individual modifications made by the function.
Raises:
TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor.
TypeError: if can_modify or cannot_modify is not None and cannot be
converted to a list of tf.Operation.
"""
return _reroute_ts(ts0, ts1, _RerouteMode.a2b, can_modify, cannot_modify)
示例6: remove_control_inputs
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def remove_control_inputs(op, cops):
"""Remove the control inputs cops from co.
Warning: this function is directly manipulating the internals of the
`tf.Graph`.
Args:
op: a `tf.Operation` from which to remove the control inputs.
cops: an object convertible to a list of `tf.Operation`.
Raises:
TypeError: if op is not a `tf.Operation`.
ValueError: if any cop in cops is not a control input of op.
"""
if not isinstance(op, _tf_ops.Operation):
raise TypeError("Expected a tf.Operation, got: {}", type(op))
cops = _util.make_list_of_op(cops, allow_graph=False)
for cop in cops:
if cop not in op.control_inputs:
raise ValueError("{} is not a control_input of {}".format(op.name,
cop.name))
# pylint: disable=protected-access
op._control_inputs = [cop for cop in op._control_inputs if cop not in cops]
op._recompute_node_def()
# pylint: enable=protected-access
示例7: add_control_inputs
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def add_control_inputs(op, cops):
"""Add the control inputs cops to op.
Warning: this function is directly manipulating the internals of the tf.Graph.
Args:
op: a tf.Operation to which the control inputs are added.
cops: an object convertible to a list of `tf.Operation`.
Raises:
TypeError: if op is not a tf.Operation
ValueError: if any cop in cops is already a control input of op.
"""
if not isinstance(op, _tf_ops.Operation):
raise TypeError("Expected a tf.Operation, got: {}", type(op))
cops = _util.make_list_of_op(cops, allow_graph=False)
for cop in cops:
if cop in op.control_inputs:
raise ValueError("{} is already a control_input of {}".format(cop.name,
op.name))
# pylint: disable=protected-access
op._control_inputs += cops
op._recompute_node_def()
# pylint: enable=protected-access
示例8: get_consuming_ops
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def get_consuming_ops(ts):
"""Return all the consuming ops of the tensors in ts.
Args:
ts: a list of `tf.Tensor`
Returns:
A list of all the consuming `tf.Operation` of the tensors in `ts`.
Raises:
TypeError: if ts cannot be converted to a list of `tf.Tensor`.
"""
ts = make_list_of_t(ts, allow_graph=False)
ops = []
for t in ts:
for op in t.consumers():
if op not in ops:
ops.append(op)
return ops
示例9: __init__
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def __init__(self, graph):
"""Create a dictionary of control-output dependencies.
Args:
graph: a `tf.Graph`.
Returns:
A dictionary where a key is a `tf.Operation` instance and the
corresponding value is a list of all the ops which have the key
as one of their control-input dependencies.
Raises:
TypeError: graph is not a `tf.Graph`.
"""
if not isinstance(graph, tf_ops.Graph):
raise TypeError("Expected a tf.Graph, got: {}".format(type(graph)))
self._control_outputs = {}
self._graph = graph
self._version = None
self._build()
示例10: find_corresponding
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def find_corresponding(targets, dst_graph, dst_scope="", src_scope=""):
"""Find corresponding ops/tensors in a different graph.
`targets` is a Python tree, that is, a nested structure of iterable
(list, tupple, dictionary) whose leaves are instances of
`tf.Tensor` or `tf.Operation`
Args:
targets: A Python tree containing `tf.Tensor` or `tf.Operation`
belonging to the original graph.
dst_graph: The graph in which the corresponding graph element must be found.
dst_scope: A scope which is prepended to the name to look for.
src_scope: A scope which is removed from the original of `top` name.
Returns:
A Python tree containin the corresponding tf.Tensor` or a `tf.Operation`.
Raises:
ValueError: if `src_name` does not start with `src_scope`.
TypeError: if `top` is not a `tf.Tensor` or a `tf.Operation`
KeyError: If the corresponding graph element cannot be found.
"""
def func(top):
return find_corresponding_elem(top, dst_graph, dst_scope, src_scope)
return transform_tree(targets, func)
示例11: testKFeatureTrainingConstruction
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def testKFeatureTrainingConstruction(self):
# pylint: disable=W0612
data = constant_op.constant(
[[random.uniform(-1, 1) for i in range(self.params.num_features)]
for _ in range(100)])
labels = [1 for _ in range(100)]
with variable_scope.variable_scope(
"KFeatureDecisionsToDataThenNNTest.testKFeatureTrainingContruction"):
graph_builder = (
k_feature_decisions_to_data_then_nn.KFeatureDecisionsToDataThenNN(
self.params))
graph = graph_builder.training_graph(data, labels, None)
self.assertTrue(isinstance(graph, Operation))
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:18,代码来源:k_feature_decisions_to_data_then_nn_test.py
示例12: testTrainingConstructionRegression
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def testTrainingConstructionRegression(self):
input_data = [[-1., 0.], [-1., 2.], # node 1
[1., 0.], [1., -2.]] # node 2
input_labels = [0, 1, 2, 3]
params = tensor_forest.ForestHParams(
num_classes=4,
num_features=2,
num_trees=10,
max_nodes=1000,
split_after_samples=25,
regression=True).fill()
graph_builder = tensor_forest.RandomForestGraphs(params)
graph = graph_builder.training_graph(input_data, input_labels)
self.assertTrue(isinstance(graph, ops.Operation))
示例13: testTrainingConstructionClassificationSparse
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def testTrainingConstructionClassificationSparse(self):
input_data = sparse_tensor.SparseTensor(
indices=[[0, 0], [0, 3], [1, 0], [1, 7], [2, 1], [3, 9]],
values=[-1.0, 0.0, -1., 2., 1., -2.0],
dense_shape=[4, 10])
input_labels = [0, 1, 2, 3]
params = tensor_forest.ForestHParams(
num_classes=4,
num_features=10,
num_trees=10,
max_nodes=1000,
split_after_samples=25).fill()
graph_builder = tensor_forest.RandomForestGraphs(params)
graph = graph_builder.training_graph(input_data, input_labels)
self.assertTrue(isinstance(graph, ops.Operation))
示例14: remove_control_inputs
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def remove_control_inputs(op, cops):
"""Remove the control inputs cops from co.
Warning: this function is directly manipulating the internals of the
`tf.Graph`.
Args:
op: a `tf.Operation` from which to remove the control inputs.
cops: an object convertible to a list of `tf.Operation`.
Raises:
TypeError: if op is not a `tf.Operation`.
ValueError: if any cop in cops is not a control input of op.
"""
if not isinstance(op, tf_ops.Operation):
raise TypeError("Expected a tf.Operation, got: {}", type(op))
cops = util.make_list_of_op(cops, allow_graph=False)
for cop in cops:
if cop not in op.control_inputs:
raise ValueError("{} is not a control_input of {}".format(op.name,
cop.name))
# pylint: disable=protected-access
op._control_inputs = [cop for cop in op._control_inputs if cop not in cops]
op._recompute_node_def()
# pylint: enable=protected-access
示例15: add_control_inputs
# 需要导入模块: from tensorflow.python.framework import ops [as 别名]
# 或者: from tensorflow.python.framework.ops import Operation [as 别名]
def add_control_inputs(op, cops):
"""Add the control inputs cops to co.
Warning: this function is directly manipulating the internals of the tf.Graph.
Args:
op: a tf.Operation to which the control inputs are added.
cops: an object convertible to a list of `tf.Operation`.
Raises:
TypeError: if op is not a tf.Operation
ValueError: if any cop in cops is already a control input of op.
"""
if not isinstance(op, tf_ops.Operation):
raise TypeError("Expected a tf.Operation, got: {}", type(op))
cops = util.make_list_of_op(cops, allow_graph=False)
for cop in cops:
if cop in op.control_inputs:
raise ValueError("{} is already a control_input of {}".format(op.name,
cop.name))
# pylint: disable=protected-access
op._control_inputs += cops
op._recompute_node_def()
# pylint: enable=protected-access