本文整理汇总了Python中tensorflow.python.framework.meta_graph.import_scoped_meta_graph方法的典型用法代码示例。如果您正苦于以下问题:Python meta_graph.import_scoped_meta_graph方法的具体用法?Python meta_graph.import_scoped_meta_graph怎么用?Python meta_graph.import_scoped_meta_graph使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.framework.meta_graph
的用法示例。
在下文中一共展示了meta_graph.import_scoped_meta_graph方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _testScopedImportWithQueue
# 需要导入模块: from tensorflow.python.framework import meta_graph [as 别名]
# 或者: from tensorflow.python.framework.meta_graph import import_scoped_meta_graph [as 别名]
def _testScopedImportWithQueue(self, test_dir, exported_filename,
new_exported_filename):
graph = tf.Graph()
meta_graph.import_scoped_meta_graph(
os.path.join(test_dir, exported_filename),
graph=graph,
import_scope="new_queue1")
graph.as_graph_element("new_queue1/dequeue:0")
graph.as_graph_element("new_queue1/close")
with graph.as_default():
new_meta_graph, _ = meta_graph.export_scoped_meta_graph(
filename=os.path.join(test_dir, new_exported_filename),
graph=graph, export_scope="new_queue1")
return new_meta_graph
# Verifies that we can export the subgraph containing a FIFOQueue under
# "queue1" and import it into "new_queue1" in a new graph.
示例2: testPotentialCycle
# 需要导入模块: from tensorflow.python.framework import meta_graph [as 别名]
# 或者: from tensorflow.python.framework.meta_graph import import_scoped_meta_graph [as 别名]
def testPotentialCycle(self):
graph1 = tf.Graph()
with graph1.as_default():
a = tf.constant(1.0, shape=[2, 2])
b = tf.constant(2.0, shape=[2, 2])
matmul = tf.matmul(a, b)
with tf.name_scope("hidden1"):
c = tf.nn.relu(matmul)
d = tf.constant(3.0, shape=[2, 2])
matmul = tf.matmul(c, d)
orig_meta_graph, _ = meta_graph.export_scoped_meta_graph(
export_scope="hidden1", graph=graph1)
graph2 = tf.Graph()
with graph2.as_default():
with self.assertRaisesRegexp(ValueError, "Graph contains unbound inputs"):
meta_graph.import_scoped_meta_graph(
orig_meta_graph, import_scope="new_hidden1")
meta_graph.import_scoped_meta_graph(
orig_meta_graph, import_scope="new_hidden1",
input_map={"$unbound_inputs_MatMul": tf.constant(4.0, shape=[2, 2])})
示例3: testExportNestedNames
# 需要导入模块: from tensorflow.python.framework import meta_graph [as 别名]
# 或者: from tensorflow.python.framework.meta_graph import import_scoped_meta_graph [as 别名]
def testExportNestedNames(self):
graph1 = tf.Graph()
with graph1.as_default():
with tf.name_scope("hidden1/hidden2/hidden3"):
images = tf.constant(1.0, tf.float32, shape=[3, 2], name="images")
weights1 = tf.Variable([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]],
name="weights")
biases1 = tf.Variable([0.1] * 3, name="biases")
tf.nn.relu(tf.matmul(images, weights1) + biases1, name="relu")
orig_meta_graph, var_list = meta_graph.export_scoped_meta_graph(
export_scope="hidden1/hidden2", graph=graph1)
var_names = [v.name for _, v in var_list.items()]
self.assertEqual(["hidden3/biases:0", "hidden3/weights:0"],
sorted(var_list.keys()))
self.assertEqual(["hidden1/hidden2/hidden3/biases:0",
"hidden1/hidden2/hidden3/weights:0"],
sorted(var_names))
for node in orig_meta_graph.graph_def.node:
self.assertTrue(node.name.startswith("hidden3"))
graph2 = tf.Graph()
new_var_list = meta_graph.import_scoped_meta_graph(
orig_meta_graph, import_scope="new_hidden1/new_hidden2",
graph=graph2)
self.assertEqual(["hidden3/biases:0", "hidden3/weights:0"],
sorted(new_var_list.keys()))
new_var_names = [v.name for _, v in new_var_list.items()]
self.assertEqual(["new_hidden1/new_hidden2/hidden3/biases:0",
"new_hidden1/new_hidden2/hidden3/weights:0"],
sorted(new_var_names))
nodes = ["new_hidden1/new_hidden2/hidden3/biases/Assign",
"new_hidden1/new_hidden2/hidden3/weights/Assign"]
expected = [b"loc:@new_hidden1/new_hidden2/hidden3/biases",
b"loc:@new_hidden1/new_hidden2/hidden3/weights"]
for n, e in zip(nodes, expected):
self.assertEqual([e], graph2.get_operation_by_name(n).get_attr("_class"))
示例4: import_and_run_meta_graph
# 需要导入模块: from tensorflow.python.framework import meta_graph [as 别名]
# 或者: from tensorflow.python.framework.meta_graph import import_scoped_meta_graph [as 别名]
def import_and_run_meta_graph(
meta_graph_def,
result_pattern,
feed_dict_fn,
log_dir_fn,
finish_session_fn=None):
# TODO(adamb) Carefully find the asset map and replace any asset py funcs appropriately with input_map.
with create_session() as sess:
try:
meta_graph.import_scoped_meta_graph(
meta_graph_def,
input_map=None,
)
except KeyError as e:
nodes = [n.name for n in tf.get_default_graph().as_graph_def().node]
nodes.sort()
eprint('error, but got nodes', nodes)
raise e
# NOTE(adamb) Could also store files to copy out in assets_collection
js_py_func_data_tensor = None
try:
js_py_func_data_tensor = sess.graph.get_tensor_by_name("py_funcs_json:0")
except KeyError as e:
pass
if js_py_func_data_tensor is not None:
js_py_func_data = js_py_func_data_tensor.eval().decode('utf-8')
py_func_data = json.loads(js_py_func_data)
# eprint('loaded py_func_data', py_func_data)
py_importer = graph_ffi.PythonImporter()
py_importer.restore_py_funcs(script_ops._py_funcs, py_func_data)
try:
return run_session(sess, result_pattern, feed_dict_fn(), log_dir_fn, finish_session_fn=finish_session_fn)
finally:
sess.close()
示例5: testNoVariables
# 需要导入模块: from tensorflow.python.framework import meta_graph [as 别名]
# 或者: from tensorflow.python.framework.meta_graph import import_scoped_meta_graph [as 别名]
def testNoVariables(self):
test_dir = _TestDir("no_variables")
filename = os.path.join(test_dir, "metafile")
input_feed_value = -10 # Arbitrary input value for feed_dict.
orig_graph = tf.Graph()
with self.test_session(graph=orig_graph) as sess:
# Create a minimal graph with zero variables.
input_tensor = tf.placeholder(tf.float32, shape=[], name="input")
offset = tf.constant(42, dtype=tf.float32, name="offset")
output_tensor = tf.add(input_tensor, offset, name="add_offset")
# Add input and output tensors to graph collections.
tf.add_to_collection("input_tensor", input_tensor)
tf.add_to_collection("output_tensor", output_tensor)
output_value = sess.run(output_tensor, {input_tensor: input_feed_value})
self.assertEqual(output_value, 32)
# Generates MetaGraphDef.
meta_graph_def, var_list = meta_graph.export_scoped_meta_graph(
filename=filename,
graph_def=tf.get_default_graph().as_graph_def(add_shapes=True),
collection_list=["input_tensor", "output_tensor"],
saver_def=None)
self.assertEqual({}, var_list)
# Create a clean graph and import the MetaGraphDef nodes.
new_graph = tf.Graph()
with self.test_session(graph=new_graph) as sess:
# Import the previously export meta graph.
meta_graph.import_scoped_meta_graph(filename)
# Re-exports the current graph state for comparison to the original.
new_meta_graph_def, _ = meta_graph.export_scoped_meta_graph(
filename + "_new")
self.assertProtoEquals(meta_graph_def, new_meta_graph_def)
# Ensures that we can still get a reference to our graph collections.
new_input_tensor = tf.get_collection("input_tensor")[0]
new_output_tensor = tf.get_collection("output_tensor")[0]
# Verifies that the new graph computes the same result as the original.
new_output_value = sess.run(
new_output_tensor, {new_input_tensor: input_feed_value})
self.assertEqual(new_output_value, output_value)
示例6: testClearDevices
# 需要导入模块: from tensorflow.python.framework import meta_graph [as 别名]
# 或者: from tensorflow.python.framework.meta_graph import import_scoped_meta_graph [as 别名]
def testClearDevices(self):
graph1 = tf.Graph()
with graph1.as_default():
with tf.device("/device:CPU:0"):
a = tf.Variable(tf.constant(1.0, shape=[2, 2]), name="a")
with tf.device("/job:ps/replica:0/task:0/gpu:0"):
b = tf.Variable(tf.constant(2.0, shape=[2, 2]), name="b")
with tf.device("/job:localhost/replica:0/task:0/cpu:0"):
tf.matmul(a, b, name="matmul")
self.assertEqual("/device:CPU:0", str(graph1.as_graph_element("a").device))
self.assertEqual("/job:ps/replica:0/task:0/device:GPU:0",
str(graph1.as_graph_element("b").device))
self.assertEqual("/job:localhost/replica:0/task:0/device:CPU:0",
str(graph1.as_graph_element("matmul").device))
# Verifies that devices are cleared on export.
orig_meta_graph, _ = meta_graph.export_scoped_meta_graph(
graph=graph1, clear_devices=True)
graph2 = tf.Graph()
with graph2.as_default():
meta_graph.import_scoped_meta_graph(orig_meta_graph, clear_devices=False)
self.assertEqual("", str(graph2.as_graph_element("a").device))
self.assertEqual("", str(graph2.as_graph_element("b").device))
self.assertEqual("", str(graph2.as_graph_element("matmul").device))
# Verifies that devices are cleared on export when passing in graph_def.
orig_meta_graph, _ = meta_graph.export_scoped_meta_graph(
graph_def=graph1.as_graph_def(), clear_devices=True)
graph2 = tf.Graph()
with graph2.as_default():
meta_graph.import_scoped_meta_graph(orig_meta_graph, clear_devices=False)
self.assertEqual("", str(graph2.as_graph_element("a").device))
self.assertEqual("", str(graph2.as_graph_element("b").device))
self.assertEqual("", str(graph2.as_graph_element("matmul").device))
# Verifies that devices are cleared on import.
orig_meta_graph, _ = meta_graph.export_scoped_meta_graph(
graph=graph1, clear_devices=False)
graph2 = tf.Graph()
with graph2.as_default():
meta_graph.import_scoped_meta_graph(orig_meta_graph, clear_devices=True)
self.assertEqual("", str(graph2.as_graph_element("a").device))
self.assertEqual("", str(graph2.as_graph_element("b").device))
self.assertEqual("", str(graph2.as_graph_element("matmul").device))