本文整理汇总了Python中tensorflow.python.framework.errors.FailedPreconditionError方法的典型用法代码示例。如果您正苦于以下问题:Python errors.FailedPreconditionError方法的具体用法?Python errors.FailedPreconditionError怎么用?Python errors.FailedPreconditionError使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.framework.errors
的用法示例。
在下文中一共展示了errors.FailedPreconditionError方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _ready
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def _ready(op, sess, msg):
"""Checks if the model is ready or not, as determined by op.
Args:
op: An op, either _ready_op or _ready_for_local_init_op, which defines the
readiness of the model.
sess: A `Session`.
msg: A message to log to warning if not ready
Returns:
A tuple (is_ready, msg), where is_ready is True if ready and False
otherwise, and msg is `None` if the model is ready, a `String` with the
reason why it is not ready otherwise.
"""
if op is None:
return True, None
else:
try:
ready_value = sess.run(op)
# The model is considered ready if ready_op returns an empty 1-D tensor.
# Also compare to `None` and dtype being int32 for backward
# compatibility.
if (ready_value is None or ready_value.dtype == np.int32 or
ready_value.size == 0):
return True, None
else:
# TODO(sherrym): If a custom ready_op returns other types of tensor,
# or strings other than variable names, this message could be
# confusing.
non_initialized_varnames = ", ".join(
[i.decode("utf-8") for i in ready_value])
return False, "Variables not initialized: " + non_initialized_varnames
except errors.FailedPreconditionError as e:
if "uninitialized" not in str(e):
logging.warning("%s : error [%s]", msg, str(e))
raise e
return False, str(e)
示例2: testUninitialized
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def testUninitialized(self):
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
"Attempting to use uninitialized value Variable"):
with self.test_session() as sess:
v = tf.Variable([1, 2])
sess.run(v[:].assign([1, 2]))
示例3: _ready
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def _ready(self, op, sess, msg):
"""Checks if the model is ready or not, as determined by op.
Args:
op: An op, either _ready_op or _ready_for_local_init_op, which defines the
readiness of the model.
sess: A `Session`.
msg: A message to log to warning if not ready
Returns:
A tuple (is_ready, msg), where is_ready is True if ready and False
otherwise, and msg is `None` if the model is ready, a `String` with the
reason why it is not ready otherwise.
"""
if op is None:
return True, None
else:
try:
ready_value = sess.run(op)
# The model is considered ready if ready_op returns an empty 1-D tensor.
# Also compare to `None` and dtype being int32 for backward
# compatibility.
if (ready_value is None or ready_value.dtype == np.int32 or
ready_value.size == 0):
return True, None
else:
# TODO(sherrym): If a custom ready_op returns other types of tensor,
# or strings other than variable names, this message could be
# confusing.
non_initialized_varnames = ", ".join(
[i.decode("utf-8") for i in ready_value])
return False, "Variables not initialized: " + non_initialized_varnames
except errors.FailedPreconditionError as e:
if "uninitialized" not in str(e):
logging.warning("%s : error [%s]", msg, str(e))
raise e
return False, str(e)
示例4: get_weights
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def get_weights(self):
# if len(self.weights) != self.nHLayers + 1:
self.weights = []
for n in xrange(self.nHLayers + 1):
if self.get_layers[n].get_w:
try:
self.weights.append(self.session.run(self.get_layers[n].get_w))
except FailedPreconditionError:
break
else:
break
return self.weights
示例5: get_biases
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def get_biases(self):
# if len(self.biases) != self.nHLayers + 1:
self.biases = []
for n in xrange(self.nHLayers + 1):
if self.get_layers[n].get_b:
try:
self.biases.append(self.session.run(self.get_layers[n].get_b))
except FailedPreconditionError:
break
else:
break
return self.biases
示例6: testDebugNumericSummaryFailureIsToleratedWhenOrdered
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def testDebugNumericSummaryFailureIsToleratedWhenOrdered(self):
with session.Session() as sess:
a = variables.Variable("1", name="a")
b = variables.Variable("3", name="b")
c = variables.Variable("2", name="c")
d = math_ops.add(a, b, name="d")
e = math_ops.add(d, c, name="e")
n = parsing_ops.string_to_number(e, name="n")
m = math_ops.add(n, n, name="m")
sess.run(variables.global_variables_initializer())
# Using DebugNumericSummary on sess.run(m) with the default
# tolerate_debug_op_creation_failures=False should error out due to the
# presence of string-dtype Tensors in the graph.
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary"],
debug_urls=self._debug_urls())
with self.assertRaises(errors.FailedPreconditionError):
sess.run(m, options=run_options, run_metadata=run_metadata)
# Using tolerate_debug_op_creation_failures=True should get rid of the
# error.
m_result, dump = self._debug_run_and_get_dump(
sess, m, debug_ops=["DebugNumericSummary"],
tolerate_debug_op_creation_failures=True)
self.assertEqual(264, m_result)
# The integer-dtype Tensors in the graph should have been dumped
# properly.
self.assertIn("n:0:DebugNumericSummary", dump.debug_watch_keys("n"))
self.assertIn("m:0:DebugNumericSummary", dump.debug_watch_keys("m"))
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:39,代码来源:session_debug_testlib.py
示例7: testDebugNumericSummaryFailureIsToleratedWhenOrdered
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def testDebugNumericSummaryFailureIsToleratedWhenOrdered(self):
with session.Session() as sess:
a = variables.Variable("1", name="a")
b = variables.Variable("3", name="b")
c = variables.Variable("2", name="c")
d = math_ops.add(a, b, name="d")
e = math_ops.add(d, c, name="e")
n = parsing_ops.string_to_number(e, name="n")
m = math_ops.add(n, n, name="m")
sess.run(variables.global_variables_initializer())
# Using DebugNumericSummary on sess.run(m) with the default
# tolerate_debug_op_creation_failures=False should error out due to the
# presence of string-dtype Tensors in the graph.
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary"],
debug_urls=self._debug_urls())
with self.assertRaises(errors.FailedPreconditionError):
sess.run(m, options=run_options, run_metadata=run_metadata)
# Using tolerate_debug_op_creation_failures=True should get rid of the
# error.
new_run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
new_run_options,
sess.graph,
debug_ops=["DebugNumericSummary"],
debug_urls=self._debug_urls(),
tolerate_debug_op_creation_failures=True)
self.assertEqual(264,
sess.run(
m,
options=new_run_options,
run_metadata=run_metadata))
# The integer-dtype Tensors in the graph should have been dumped
# properly.
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertIn("n:0:DebugNumericSummary", dump.debug_watch_keys("n"))
self.assertIn("m:0:DebugNumericSummary", dump.debug_watch_keys("m"))
示例8: testDebugNumericSummaryInvalidAttributesStringAreCaught
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def testDebugNumericSummaryInvalidAttributesStringAreCaught(self):
with session.Session() as sess:
a = variables.Variable(10.0, name="a")
b = variables.Variable(0.0, name="b")
c = variables.Variable(0.0, name="c")
x = math_ops.divide(a, b, name="x")
y = math_ops.multiply(x, c, name="y")
sess.run(variables.global_variables_initializer())
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_a:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; bar=false)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"2 attribute key\(s\) were not valid for debug node "
r"__dbg_a:0_0_DebugNumericSummary:"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; mute_if_healthy=true)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_a:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
示例9: analyze
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def analyze(sdae, datafile_norm,\
labels, mapped_labels=None,\
bias_node=False, prefix=None):
"""
Speeks to R, and submits it analysis jobs.
"""
# Get some R functions on the Python environment
def_colors = robjects.globalenv['def_colors']
do_analysis = robjects.globalenv['do_analysis']
# labels.reset_index(level=0, inplace=True)
def_colors(labels)
act = np.float32(datafile_norm)
try:
do_analysis(act, sdae.get_weights, sdae.get_biases,\
pjoin(FLAGS.output_dir, "{}_R_Layer_".format(prefix)),\
bias_node=bias_node)
except RRuntimeError as e:
pass
# for layer in sdae.get_layers:
# fixed = False if layer.which > sdae.nHLayers - 1 else True
#
# try:
# act = sdae.get_activation(act, layer.which, use_fixed=fixed)
# print("Analysis for layer {}:".format(layer.which + 1))
# temp = pd.DataFrame(data=act)
# do_analysis(temp, pjoin(FLAGS.output_dir,\
# "{}_Layer_{}"\
# .format(prefix, layer.which)))
#
# # if not fixed:
# # weights = sdae.get_weights[layer.which]
# # for node in weights.transpose():
# # sns.distplot(node, kde=False,\
# fit=stats.gamma, rug=True);
# # sns.plt.show()
# try:
# plot_tSNE(act, mapped_labels,\
# plot_name="Pyhton_{}_tSNE_layer_{}"\
# .format(prefix, layer.which))
# except IndexError as e:
# pass
# except FailedPreconditionError as e:
# break
示例10: testDebugNumericSummaryInvalidAttributesStringAreCaught
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def testDebugNumericSummaryInvalidAttributesStringAreCaught(self):
with session.Session(config=no_rewrite_session_config()) as sess:
a = variables.Variable(10.0, name="a")
b = variables.Variable(0.0, name="b")
c = variables.Variable(0.0, name="c")
x = math_ops.divide(a, b, name="x")
y = math_ops.multiply(x, c, name="y")
sess.run(variables.global_variables_initializer())
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_.:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; bar=false)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"2 attribute key\(s\) were not valid for debug node "
r"__dbg_.:0_0_DebugNumericSummary:"):
sess.run(y, options=run_options, run_metadata=run_metadata)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugNumericSummary(foo=1.0; mute_if_healthy=true)"],
debug_urls=self._debug_urls())
with self.assertRaisesRegexp(
errors.FailedPreconditionError,
r"1 attribute key\(s\) were not valid for debug node "
r"__dbg_.:0_0_DebugNumericSummary: foo"):
sess.run(y, options=run_options, run_metadata=run_metadata)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:49,代码来源:session_debug_testlib.py
示例11: _poll_server_till_success
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import FailedPreconditionError [as 别名]
def _poll_server_till_success(max_attempts,
sleep_per_poll_sec,
debug_server_url,
dump_dir,
server,
gpu_memory_fraction=1.0):
"""Poll server until success or exceeding max polling count.
Args:
max_attempts: (int) How many times to poll at maximum
sleep_per_poll_sec: (float) How many seconds to sleep for after each
unsuccessful poll.
debug_server_url: (str) gRPC URL to the debug server.
dump_dir: (str) Dump directory to look for files in. If None, will directly
check data from the server object.
server: The server object.
gpu_memory_fraction: (float) Fraction of GPU memory to be
allocated for the Session used in server polling.
Returns:
(bool) Whether the polling succeeded within max_polls attempts.
"""
poll_count = 0
config = config_pb2.ConfigProto(gpu_options=config_pb2.GPUOptions(
per_process_gpu_memory_fraction=gpu_memory_fraction))
with session.Session(config=config) as sess:
for poll_count in range(max_attempts):
server.clear_data()
print("Polling: poll_count = %d" % poll_count)
x_init_name = "x_init_%d" % poll_count
x_init = constant_op.constant([42.0], shape=[1], name=x_init_name)
x = variables.Variable(x_init, name=x_init_name)
run_options = config_pb2.RunOptions()
debug_utils.add_debug_tensor_watch(
run_options, x_init_name, 0, debug_urls=[debug_server_url])
try:
sess.run(x.initializer, options=run_options)
except errors.FailedPreconditionError:
pass
if dump_dir:
if os.path.isdir(
dump_dir) and debug_data.DebugDumpDir(dump_dir).size > 0:
shutil.rmtree(dump_dir)
print("Poll succeeded.")
return True
else:
print("Poll failed. Sleeping for %f s" % sleep_per_poll_sec)
time.sleep(sleep_per_poll_sec)
else:
if server.debug_tensor_values:
print("Poll succeeded.")
return True
else:
print("Poll failed. Sleeping for %f s" % sleep_per_poll_sec)
time.sleep(sleep_per_poll_sec)
return False
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:63,代码来源:grpc_debug_test_server.py