本文整理汇总了Python中tensorflow.python.framework.errors.AbortedError方法的典型用法代码示例。如果您正苦于以下问题:Python errors.AbortedError方法的具体用法?Python errors.AbortedError怎么用?Python errors.AbortedError使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.framework.errors
的用法示例。
在下文中一共展示了errors.AbortedError方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def __init__(self, session_creator, hooks, should_recover):
"""Sets up a Monitored or Hooked Session.
Args:
session_creator: A factory object to create session. Typically a
`ChiefSessionCreator` or a `WorkerSessionCreator`.
hooks: An iterable of `SessionRunHook' objects.
should_recover: A bool. Indicates whether to recover from `AbortedError`
or not.
"""
self._graph_was_finalized = ops.get_default_graph().finalized
self._hooks = hooks or []
for h in self._hooks:
h.begin()
# Create the session.
self._coordinated_creator = self._CoordinatedSessionCreator(
session_creator=session_creator or ChiefSessionCreator(),
hooks=self._hooks)
if should_recover:
self._sess = _RecoverableSession(self._coordinated_creator)
else:
self._sess = self._coordinated_creator.create_session()
示例2: run
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
while True:
try:
if not self._sess:
self._sess = self._create_session()
return self._sess.run(fetches,
feed_dict=feed_dict,
options=options,
run_metadata=run_metadata)
except errors.AbortedError:
logging.info('An AbortedError was raised. Closing the current session. '
'It\'s most likely due to a preemption in a connected '
'worker/ps. '
'A new session will be created on the next session.run().')
self.close()
self._sess = None
示例3: __init__
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def __init__(self, session_creator, hooks, should_recover,
stop_grace_period_secs=120):
"""Sets up a Monitored or Hooked Session.
Args:
session_creator: A factory object to create session. Typically a
`ChiefSessionCreator` or a `WorkerSessionCreator`.
hooks: An iterable of `SessionRunHook' objects.
should_recover: A bool. Indicates whether to recover from `AbortedError`
and `UnavailableError` or not.
stop_grace_period_secs: Number of seconds given to threads to stop after
`close()` has been called.
"""
self._graph_was_finalized = ops.get_default_graph().finalized
self._hooks = hooks or []
for h in self._hooks:
h.begin()
# Create the session.
self._coordinated_creator = self._CoordinatedSessionCreator(
session_creator=session_creator or ChiefSessionCreator(),
hooks=self._hooks,
stop_grace_period_secs=stop_grace_period_secs)
if should_recover:
self._sess = _RecoverableSession(self._coordinated_creator)
else:
self._sess = self._coordinated_creator.create_session()
示例4: basic_train_loop
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def basic_train_loop(supervisor, train_step_fn, args=None,
kwargs=None, master=""):
"""Basic loop to train a model.
Calls `train_step_fn` in a loop to train a model. The function is called as:
```python
train_step_fn(session, *args, **kwargs)
```
It is passed a `tf.Session` in addition to `args` and `kwargs`. The function
typically runs one training step in the session.
Args:
supervisor: `tf.train.Supervisor` to run the training services.
train_step_fn: Callable to execute one training step. Called
repeatedly as `train_step_fn(session, *args **kwargs)`.
args: Optional positional arguments passed to `train_step_fn`.
kwargs: Optional keyword arguments passed to `train_step_fn`.
master: Master to use to create the training session. Defaults to
`""` which causes the session to be created in the local process.
"""
if args is None:
args = []
if kwargs is None:
kwargs = {}
should_retry = True
while should_retry:
try:
should_retry = False
with supervisor.managed_session(master) as sess:
while not supervisor.should_stop():
train_step_fn(sess, *args, **kwargs)
except errors.AbortedError:
# Always re-run on AbortedError as it indicates a restart of one of the
# distributed tensorflow servers.
should_retry = True
示例5: __init__
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def __init__(self, limit=5, init_delay=5.0, backoff_factor=2.0,
forgive_after_seconds=6000, handled_exceptions=None):
"""Creates a FailureTolerator.
The result will pause for `init_delay *
(backoff_factor^(failure_count-1))` when re-entering `forgive()`
after a failure.
Args:
limit: The maximum number of suppressed, unforgiven, failures.
init_delay: How long to pause once the first failure is
encountered. Defaults to five seconds.
backoff_factor: Each subsequent failure grows the pause by this factor.
forgive_after_seconds: Failures older than this are forgiven.
handled_exceptions: The exceptions to forgive. Defaults to
`(errors.AbortedError,)`.
"""
self.limit = limit
self.backoff = backoff_factor
self.delay = init_delay
self.forgive_after = forgive_after_seconds
self.exceptions = []
self.time_in_delay = 0.0
if handled_exceptions is None:
self.handled = (errors.AbortedError,)
else:
self.handled = tuple(handled_exceptions)
示例6: _create_session
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def _create_session(self):
while True:
try:
return self._sess_creator.create_session()
except errors.AbortedError:
logging.info('An AbortedError was raised during initialization. '
'It\'s most likely due to a preemption in a connected '
'worker/ps. A new session will be created.')
示例7: basic_train_loop
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def basic_train_loop(supervisor, train_step_fn, args=None,
kwargs=None, master=""):
"""Basic loop to train a model.
Calls `train_step_fn` in a loop to train a model. The function is called as:
```python
train_step_fn(session, *args, **kwargs)
```
It is passed a `tf.Session` in addition to `args` and `kwargs`. The function
typically runs one training step in the session.
Args:
supervisor: `tf.Supervisor` to run the training services.
train_step_fn: Callable to execute one training step. Called
repeatedly as `train_step_fn(session, *args **kwargs)`.
args: Optional positional arguments passed to `train_step_fn`.
kwargs: Optional keyword arguments passed to `train_step_fn`.
master: Master to use to create the training session. Defaults to
`""` which causes the session to be created in the local process.
"""
if args is None:
args = []
if kwargs is None:
kwargs = {}
should_retry = True
while should_retry:
try:
should_retry = False
with supervisor.managed_session(master) as sess:
while not supervisor.should_stop():
train_step_fn(sess, *args, **kwargs)
except errors.AbortedError:
# Always re-run on AbortedError as it indicates a restart of one of the
# distributed tensorflow servers.
should_retry = True
示例8: run
# 需要导入模块: from tensorflow.python.framework import errors [as 别名]
# 或者: from tensorflow.python.framework.errors import AbortedError [as 别名]
def run(self, fetches, feed_dict=None, options=None, run_metadata=None):
while True:
try:
if not self._sess:
self._sess = self._sess_creator.create_session()
return self._sess.run(fetches,
feed_dict=feed_dict,
options=options,
run_metadata=run_metadata)
except errors.AbortedError:
self.close()
self._sess = None