当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.parse_csv方法代码示例

本文整理汇总了Python中tensorflow.parse_csv方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.parse_csv方法的具体用法?Python tensorflow.parse_csv怎么用?Python tensorflow.parse_csv使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.parse_csv方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: eval_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import parse_csv [as 别名]
def eval_input_fn(features, labels, batch_size):
    """An input function for evaluation or prediction"""
    features=dict(features)
    if labels is None:
        # No labels, use only features.
        inputs = features
    else:
        inputs = (features, labels)

    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices(inputs)

    # Batch the examples
    assert batch_size is not None, "batch_size must not be None"
    dataset = dataset.batch(batch_size)

    # Return the dataset.
    return dataset


# The remainder of this file contains a simple example of a csv parser,
#     implemented using a the `Dataset` class.

# `tf.parse_csv` sets the types of the outputs to match the examples given in
#     the `record_defaults` argument. 
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-TensorFlow-Second-Edition,代码行数:27,代码来源:iris_data.py

示例2: eval_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import parse_csv [as 别名]
def eval_input_fn(features, labels, batch_size):
    """An input function for evaluation or prediction"""
    features=dict(features)
    if labels is None:
        # No labels, use only features.
        inputs = features
    else:
        inputs = (features, labels)

    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices(inputs)

    # Batch the examples
    assert batch_size is not None, "batch_size must not be None"
    dataset = dataset.batch(batch_size)

    # Return the read end of the pipeline.
    return dataset.make_one_shot_iterator().get_next()


# The remainder of this file contains a simple example of a csv parser,
#     implemented using a the `Dataset` class.

# `tf.parse_csv` sets the types of the outputs to match the examples given in
#     the `record_defaults` argument. 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:27,代码来源:iris_data.py

示例3: load_data

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import parse_csv [as 别名]
def load_data(y_name='Species'):
    """Returns the iris dataset as (train_x, train_y), (test_x, test_y)."""
    train_path, test_path = maybe_download()

    train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
    train_x, train_y = train, train.pop(y_name)

    test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
    test_x, test_y = test, test.pop(y_name)

    return (train_x, train_y), (test_x, test_y)


# The remainder of this file contains a simple example of a csv parser,
#     implemented using a the `Dataset` class.

# `tf.parse_csv` sets the types of the outputs to match the examples given in
#     the `record_defaults` argument. 
开发者ID:ElementAI,项目名称:multithreaded-estimators,代码行数:20,代码来源:iris_data.py

示例4: eval_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import parse_csv [as 别名]
def eval_input_fn(features, labels, batch_size):
    """An input function for evaluation or prediction"""
    features=dict(features)
    if labels is None:
        # No labels, use only features.
        inputs = features
    else:
        inputs = (features, labels)

    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices(inputs)

    # Batch the examples
    assert batch_size is not None, "batch_size must not be None"
    dataset = dataset.batch(batch_size)

    # Return the dataset.
    return dataset


# The remainder of this file contains a simple example of a csv parser,
#     implemented using the `Dataset` class.

# `tf.parse_csv` sets the types of the outputs to match the examples given in
#     the `record_defaults` argument. 
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:27,代码来源:iris_data.py

示例5: eval_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import parse_csv [as 别名]
def eval_input_fn(features, labels, batch_size):
    """An input function for evaluation or prediction"""
    features = dict(features)
    if labels is None:
        # No labels, use only features.
        inputs = features
    else:
        inputs = (features, labels)

    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices(inputs)

    # Batch the examples
    assert batch_size is not None, "batch_size must not be None"
    dataset = dataset.batch(batch_size)

    # Return the dataset.
    return dataset


# The remainder of this file contains a simple example of a csv parser,
#     implemented using the `Dataset` class.

# `tf.parse_csv` sets the types of the outputs to match the examples given in
#     the `record_defaults` argument. 
开发者ID:mlflow,项目名称:mlflow,代码行数:27,代码来源:iris_data_utils.py


注:本文中的tensorflow.parse_csv方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。