本文整理汇总了Python中tensorflow.no_regularizer方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.no_regularizer方法的具体用法?Python tensorflow.no_regularizer怎么用?Python tensorflow.no_regularizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.no_regularizer方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _mem_init
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import no_regularizer [as 别名]
def _mem_init(self, is_training, name):
mem_initializer = tf.constant_initializer(0.0)
# Kinda like bias
if cfg.TRAIN.BIAS_DECAY:
mem_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)
else:
mem_regularizer = tf.no_regularizer
with tf.variable_scope('SMN'):
with tf.variable_scope(name):
mem_init = tf.get_variable('mem_init',
[1, cfg.MEM.INIT_H, cfg.MEM.INIT_W, cfg.MEM.C],
initializer=mem_initializer,
trainable=is_training,
regularizer=mem_regularizer)
self._score_summaries[0].append(mem_init)
# resize it to the image-specific size
mem_init = tf.image.resize_bilinear(mem_init, self._memory_size,
name="resize_init")
return mem_init
示例2: vgg_arg_scope
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import no_regularizer [as 别名]
def vgg_arg_scope(weight_decay=0.0005):
"""Defines the VGG arg scope.
Args:
weight_decay: The l2 regularization coefficient.
Returns:
An arg_scope.
"""
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(weight_decay),
biases_regularizer=tf.no_regularizer,
biases_initializer=tf.zeros_initializer()):
with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc:
return arg_sc
示例3: testVarScopeRegularizer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import no_regularizer [as 别名]
def testVarScopeRegularizer(self):
with self.test_session() as sess:
init = tf.constant_initializer(0.3)
def regularizer1(v):
return tf.reduce_mean(v) + 0.1
def regularizer2(v):
return tf.reduce_mean(v) + 0.2
with tf.variable_scope("tower", regularizer=regularizer1) as tower:
with tf.variable_scope("foo", initializer=init):
v = tf.get_variable("v", [])
sess.run(tf.initialize_variables([v]))
losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
self.assertEqual(1, len(losses))
self.assertAllClose(losses[0].eval(), 0.4)
with tf.variable_scope(tower, initializer=init) as vs:
u = tf.get_variable("u", [])
vs.set_regularizer(regularizer2)
w = tf.get_variable("w", [])
# Next 3 variable not regularized to test disabling regularization.
x = tf.get_variable("x", [], regularizer=tf.no_regularizer)
with tf.variable_scope("baz", regularizer=tf.no_regularizer):
y = tf.get_variable("y", [])
vs.set_regularizer(tf.no_regularizer)
z = tf.get_variable("z", [])
# Check results.
losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
self.assertEqual(3, len(losses))
sess.run(tf.initialize_variables([u, w, x, y, z]))
self.assertAllClose(losses[0].eval(), 0.4)
self.assertAllClose(losses[1].eval(), 0.4)
self.assertAllClose(losses[2].eval(), 0.5)
with tf.variable_scope("foo", reuse=True):
v = tf.get_variable("v", []) # "v" is alredy there, reused
losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
self.assertEqual(3, len(losses)) # No new loss added.
示例4: create_architecture_demo
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import no_regularizer [as 别名]
def create_architecture_demo(self, mode, num_classes, tag=None,
anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
assert mode == 'TEST', 'only for demo'
self._image = tf.placeholder(tf.float32, shape=[1, None, None, 3])
self._lwir = tf.placeholder(tf.float32, shape=[1, None, None, 3])
self._im_info = tf.placeholder(tf.float32, shape=[3])
self._tag = tag
self._num_classes = num_classes
self._mode = mode
self._anchor_scales = anchor_scales
self._num_scales = len(anchor_scales)
self._anchor_ratios = anchor_ratios
self._num_ratios = len(anchor_ratios)
self._num_anchors = self._num_scales * self._num_ratios
training = mode == 'TRAIN'
testing = mode == 'TEST'
assert tag != None
# handle most of the regularizers here
weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)
if cfg.TRAIN.BIAS_DECAY:
biases_regularizer = weights_regularizer
else:
biases_regularizer = tf.no_regularizer
# select initializers
if cfg.TRAIN.TRUNCATED:
initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.01)
initializer_bbox = tf.truncated_normal_initializer(mean=0.0, stddev=0.001)
else:
initializer = tf.random_normal_initializer(mean=0.0, stddev=0.01)
initializer_bbox = tf.random_normal_initializer(mean=0.0, stddev=0.001)
# list as many types of layers as possible, even if they are not used now
with arg_scope([slim.conv2d, slim.conv2d_in_plane,
slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected],
weights_regularizer=weights_regularizer,
biases_regularizer=biases_regularizer,
biases_initializer=tf.constant_initializer(0.0)):
self._build_network(training, initializer, initializer_bbox)
layers_to_output = {}
return layers_to_output
示例5: create_architecture
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import no_regularizer [as 别名]
def create_architecture(self, mode, num_classes, tag=None):
self._image = tf.placeholder(tf.float32, shape=[1, None, None, 3])
self._im_info = tf.placeholder(tf.float32, shape=[3])
self._memory_size = tf.placeholder(tf.int32, shape=[2])
self._gt_boxes = tf.placeholder(tf.float32, shape=[None, 5])
self._num_gt = tf.placeholder(tf.int32, shape=[])
self._tag = tag
self._num_classes = num_classes
self._mode = mode
training = mode == 'TRAIN'
testing = mode == 'TEST'
assert tag is not None
# handle most of the regularizers here
weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)
if cfg.TRAIN.BIAS_DECAY:
biases_regularizer = weights_regularizer
else:
biases_regularizer = tf.no_regularizer
# list as many types of layers as possible, even if they are not used now
with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, \
slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected],
weights_regularizer=weights_regularizer,
biases_regularizer=biases_regularizer,
biases_initializer=tf.constant_initializer(0.0)):
rois, cls_prob = self._build_network(training)
layers_to_output = {'rois': rois}
if not testing:
self._add_losses()
layers_to_output.update(self._losses)
val_summaries = []
with tf.device("/cpu:0"):
val_summaries.append(self._add_gt_image_summary())
val_summaries.append(self._add_pred_summary())
for key, var in self._event_summaries.items():
val_summaries.append(tf.summary.scalar(key, var))
for key, var in self._score_summaries.items():
self._add_score_summary(key, var)
for var in self._act_summaries:
self._add_act_summary(var)
self._summary_op = tf.summary.merge_all()
self._summary_op_val = tf.summary.merge(val_summaries)
layers_to_output.update(self._predictions)
return layers_to_output
示例6: create_architecture
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import no_regularizer [as 别名]
def create_architecture(self, mode, num_classes, tag=None):
self._image = tf.placeholder(tf.float32, shape=[1, None, None, 3])
self._im_info = tf.placeholder(tf.float32, shape=[3])
self._memory_size = tf.placeholder(tf.int32, shape=[2])
self._gt_boxes = tf.placeholder(tf.float32, shape=[None, 5])
self._count_base = tf.ones([1, cfg.MEM.CROP_SIZE, cfg.MEM.CROP_SIZE, 1])
self._num_gt = tf.placeholder(tf.int32, shape=[])
self._tag = tag
self._num_classes = num_classes
self._mode = mode
training = mode == 'TRAIN'
testing = mode == 'TEST'
assert tag is not None
# handle most of the regularizers here
weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)
if cfg.TRAIN.BIAS_DECAY:
biases_regularizer = weights_regularizer
else:
biases_regularizer = tf.no_regularizer
# list as many types of layers as possible, even if they are not used now
with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, \
slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected],
weights_regularizer=weights_regularizer,
biases_regularizer=biases_regularizer,
biases_initializer=tf.constant_initializer(0.0)):
rois = self._build_memory(training, testing)
layers_to_output = {'rois': rois}
if not testing:
self._add_memory_losses("loss")
layers_to_output.update(self._losses)
self._create_summary()
layers_to_output.update(self._predictions)
return layers_to_output
# take the last predicted output
示例7: _make_graph
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import no_regularizer [as 别名]
def _make_graph(self):
self.logger.info("Generating training graph on {} GPUs ...".format(self.cfg.num_gpus))
weights_initializer = slim.xavier_initializer()
biases_initializer = tf.constant_initializer(0.)
biases_regularizer = tf.no_regularizer
weights_regularizer = tf.contrib.layers.l2_regularizer(self.cfg.weight_decay)
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
for i in range(self.cfg.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as name_scope:
# Force all Variables to reside on the CPU.
with slim.arg_scope([slim.model_variable, slim.variable], device='/device:CPU:0'):
with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, \
slim.conv2d_transpose, slim.separable_conv2d,
slim.fully_connected],
weights_regularizer=weights_regularizer,
biases_regularizer=biases_regularizer,
weights_initializer=weights_initializer,
biases_initializer=biases_initializer):
# loss over single GPU
self.net.make_network(is_train=True)
if i == self.cfg.num_gpus - 1:
loss = self.net.get_loss(include_wd=True)
else:
loss = self.net.get_loss()
self._input_list.append( self.net.get_inputs() )
tf.get_variable_scope().reuse_variables()
if i == 0:
if self.cfg.num_gpus > 1 and self.cfg.bn_train is True:
self.logger.warning("BN is calculated only on single GPU.")
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, name_scope)
with tf.control_dependencies(extra_update_ops):
grads = self._optimizer.compute_gradients(loss)
else:
grads = self._optimizer.compute_gradients(loss)
final_grads = []
with tf.variable_scope('Gradient_Mult') as scope:
for grad, var in grads:
final_grads.append((grad, var))
tower_grads.append(final_grads)
if len(tower_grads) > 1:
grads = average_gradients(tower_grads)
else:
grads = tower_grads[0]
apply_gradient_op = self._optimizer.apply_gradients(grads)
train_op = tf.group(apply_gradient_op, *extra_update_ops)
return train_op