本文整理汇总了Python中tensorflow.model_variables方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.model_variables方法的具体用法?Python tensorflow.model_variables怎么用?Python tensorflow.model_variables使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.model_variables方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _checkpoint_var_search
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def _checkpoint_var_search(self, checkpoint_path):
reader = tf.train.NewCheckpointReader(checkpoint_path)
saved_shapes = reader.get_variable_to_shape_map()
model_names = tf.model_variables() # Used by tf.slim layers
if not len(tf.model_variables()):
model_names = tf.global_variables() # Fallback when slim is not used
model_names = set([v.name.split(':')[0] for v in model_names])
checkpoint_names = set(saved_shapes.keys())
found_names = model_names & checkpoint_names
missing_names = model_names - checkpoint_names
shape_conflicts = set()
restored = []
with tf.variable_scope('', reuse=True):
for name in found_names:
# print(tf.global_variables())
# print(name, name in model_names, name in checkpoint_names)
var = tf.get_variable(name)
var_shape = var.get_shape().as_list()
if var_shape == saved_shapes[name]:
restored.append(var)
else:
shape_conflicts.add(name)
found_names -= shape_conflicts
return (restored, sorted(found_names),
sorted(missing_names), sorted(shape_conflicts))
示例2: from_previous_ckpt
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def from_previous_ckpt(self,sess):
sess.run(tf.global_variables_initializer())
for var in tf.trainable_variables(): # trainable weights, we need surgery
print(var.name, var.eval().mean())
print('Restoring model snapshots from {:s}'.format(self.pretrained_model))
saver_t = {}
saver_t = [var for var in tf.model_variables() if 'fc_binary' not in var.name \
and 'binary_classification' not in var.name \
and 'conv1_pose_map' not in var.name \
and 'pool1_pose_map' not in var.name \
and 'conv2_pose_map' not in var.name \
and 'pool2_pose_map' not in var.name]
self.saver_restore = tf.train.Saver(saver_t)
self.saver_restore.restore(sess, self.pretrained_model)
print("the variables is being trained now \n")
for var in tf.trainable_variables():
print(var.name, var.eval().mean())
开发者ID:DirtyHarryLYL,项目名称:Transferable-Interactiveness-Network,代码行数:24,代码来源:train_Solver_HICO_pose_pattern_inD_more_positive_coslr.py
示例3: from_previous_ckpt
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def from_previous_ckpt(self,sess):
sess.run(tf.global_variables_initializer())
for var in tf.trainable_variables(): # trainable weights, we need surgery
print(var.name, var.eval().mean())
print('Restoring model snapshots from {:s}'.format(self.pretrained_model))
saver_t = {}
saver_t = [var for var in tf.model_variables()]
self.saver_restore = tf.train.Saver(saver_t)
self.saver_restore.restore(sess, self.pretrained_model)
print("the variables is being trained now \n")
for var in tf.trainable_variables():
print(var.name, var.eval().mean())
开发者ID:DirtyHarryLYL,项目名称:Transferable-Interactiveness-Network,代码行数:19,代码来源:train_Solver_VCOCO_pose_pattern_inD_more_positive.py
示例4: get_init_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def get_init_fn(scopes, init_model):
"""Initialize assigment operator function used while training."""
if not init_model:
return None
for var in tf.trainable_variables():
if not (var in tf.model_variables()):
tf.contrib.framework.add_model_variable(var)
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
init_model, var_list)
def init_assign_function(sess):
sess.run(init_assign_op, init_feed_dict)
return init_assign_function
示例5: _checkpoint_var_search
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def _checkpoint_var_search(self, checkpoint_path):
reader = tf.train.NewCheckpointReader(checkpoint_path)
saved_shapes = reader.get_variable_to_shape_map()
model_names = tf.model_variables() # Used by tf.slim layers
if not len(tf.model_variables()):
model_names = tf.global_variables() # Fallback when slim is not used
model_names = set([v.name.split(':')[0] for v in model_names])
checkpoint_names = set(saved_shapes.keys())
found_names = model_names & checkpoint_names
missing_names = model_names - checkpoint_names
shape_conflicts = set()
restored = []
with tf.variable_scope('', reuse=True):
for name in found_names:
var = tf.get_variable(name)
var_shape = var.get_shape().as_list()
if var_shape == saved_shapes[name]:
restored.append(var)
else:
shape_conflicts.add(name)
found_names -= shape_conflicts
return (restored, sorted(found_names),
sorted(missing_names), sorted(shape_conflicts))
示例6: get_var_list_to_restore
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def get_var_list_to_restore():
"""Choose which vars to restore, ignore vars by setting --checkpoint_exclude_scopes """
variables_to_restore = []
if FLAGS.checkpoint_exclude_scopes is not None:
exclusions = [scope.strip()
for scope in FLAGS.checkpoint_exclude_scopes.split(',')]
# build restore list
for var in tf.model_variables():
for exclusion in exclusions:
if var.name.startswith(exclusion):
break
else:
variables_to_restore.append(var)
else:
variables_to_restore = tf.model_variables()
variables_to_restore_final = []
if FLAGS.checkpoint_include_scopes is not None:
includes = [
scope.strip()
for scope in FLAGS.checkpoint_include_scopes.split(',')
]
for var in variables_to_restore:
for include in includes:
if var.name.startswith(include):
variables_to_restore_final.append(var)
break
else:
variables_to_restore_final = variables_to_restore
return variables_to_restore_final
示例7: get_var_list_to_restore
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def get_var_list_to_restore():
"""Choosing which vars to restore, ignore vars by setting --checkpoint_exclude_scopes """
variables_to_restore = []
if FLAGS.checkpoint_exclude_scopes is not None:
exclusions = [scope.strip()
for scope in FLAGS.checkpoint_exclude_scopes.split(',')]
# build restore list
for var in tf.model_variables():
excluded = False
for exclusion in exclusions:
if var.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
else:
variables_to_restore = tf.model_variables()
variables_to_restore_final = []
if FLAGS.checkpoint_include_scopes is not None:
includes = [
scope.strip()
for scope in FLAGS.checkpoint_include_scopes.split(',')
]
for var in variables_to_restore:
included = False
for include in includes:
if var.name.startswith(include):
included = True
break
if included:
variables_to_restore_final.append(var)
else:
variables_to_restore_final = variables_to_restore
return variables_to_restore_final
示例8: get_model_gradient_multipliers
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def get_model_gradient_multipliers(last_layers, last_layer_gradient_multiplier):
"""Gets the gradient multipliers.
The gradient multipliers will adjust the learning rates for model
variables. For the task of semantic segmentation, the models are
usually fine-tuned from the models trained on the task of image
classification. To fine-tune the models, we usually set larger (e.g.,
10 times larger) learning rate for the parameters of last layer.
Args:
last_layers: Scopes of last layers.
last_layer_gradient_multiplier: The gradient multiplier for last layers.
Returns:
The gradient multiplier map with variables as key, and multipliers as value.
"""
gradient_multipliers = {}
for var in tf.model_variables():
# Double the learning rate for biases.
if 'biases' in var.op.name:
gradient_multipliers[var.op.name] = 2.
# Use larger learning rate for last layer variables.
for layer in last_layers:
if layer in var.op.name and 'biases' in var.op.name:
gradient_multipliers[var.op.name] = 2 * last_layer_gradient_multiplier
break
elif layer in var.op.name:
gradient_multipliers[var.op.name] = last_layer_gradient_multiplier
break
return gradient_multipliers
示例9: _log_summaries
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def _log_summaries(input_image, label, num_of_classes, output):
"""Logs the summaries for the model.
Args:
input_image: Input image of the model. Its shape is [batch_size, height,
width, channel].
label: Label of the image. Its shape is [batch_size, height, width].
num_of_classes: The number of classes of the dataset.
output: Output of the model. Its shape is [batch_size, height, width].
"""
# Add summaries for model variables.
for model_var in tf.model_variables():
tf.summary.histogram(model_var.op.name, model_var)
# Add summaries for images, labels, semantic predictions.
if FLAGS.save_summaries_images:
tf.summary.image('samples/%s' % common.IMAGE, input_image)
# Scale up summary image pixel values for better visualization.
pixel_scaling = max(1, 255 // num_of_classes)
summary_label = tf.cast(label * pixel_scaling, tf.uint8)
tf.summary.image('samples/%s' % common.LABEL, summary_label)
predictions = tf.expand_dims(tf.argmax(output, 3), -1)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
tf.summary.image('samples/%s' % common.OUTPUT_TYPE, summary_predictions)
示例10: _shadow_model_variables
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def _shadow_model_variables(shadow_vars):
"""
Create shadow vars for model_variables as well, and add to the list of ``shadow_vars``.
Returns:
list of (shadow_model_var, local_model_var) used for syncing.
"""
G = tf.get_default_graph()
curr_shadow_vars = set([v.name for v in shadow_vars])
model_vars = tf.model_variables()
shadow_model_vars = []
for v in model_vars:
assert v.name.startswith('tower'), "Found some MODEL_VARIABLES created outside of the tower function!"
stripped_op_name, stripped_var_name = get_op_tensor_name(re.sub('^tower[0-9]+/', '', v.name))
if stripped_op_name in curr_shadow_vars:
continue
try:
G.get_tensor_by_name(stripped_var_name)
logger.warn("Model Variable {} also appears in other collections.".format(stripped_var_name))
continue
except KeyError:
pass
new_v = tf.get_variable(stripped_op_name, dtype=v.dtype.base_dtype,
initializer=v.initial_value,
trainable=False)
curr_shadow_vars.add(stripped_op_name) # avoid duplicated shadow_model_vars
shadow_vars.append(new_v)
shadow_model_vars.append((new_v, v)) # only need to sync model_var from one tower
return shadow_model_vars
示例11: _get_sync_model_vars_op
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def _get_sync_model_vars_op(self):
"""
Get the op to sync local model_variables to PS.
"""
ops = []
for (shadow_v, local_v) in self._shadow_model_vars:
ops.append(shadow_v.assign(local_v.read_value()))
assert len(ops)
return tf.group(*ops, name='sync_{}_model_variables_to_ps'.format(len(ops)))
示例12: _shadow_model_variables
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def _shadow_model_variables(shadow_vars):
"""
Create shadow vars for model_variables as well, and add to the list of ``shadow_vars``.
Returns:
list of (shadow_model_var, local_model_var) used for syncing.
"""
G = tf.get_default_graph()
curr_shadow_vars = {v.name for v in shadow_vars}
model_vars = tf.model_variables()
shadow_model_vars = []
for v in model_vars:
assert v.name.startswith('tower'), "Found some MODEL_VARIABLES created outside of the tower function!"
stripped_op_name, stripped_var_name = get_op_tensor_name(re.sub('^tower[0-9]+/', '', v.name))
if stripped_op_name in curr_shadow_vars:
continue
try:
G.get_tensor_by_name(stripped_var_name)
logger.warn("Model Variable {} also appears in other collections.".format(stripped_var_name))
continue
except KeyError:
pass
new_v = tf.get_variable(stripped_op_name, dtype=v.dtype.base_dtype,
initializer=v.initial_value,
trainable=False)
curr_shadow_vars.add(stripped_op_name) # avoid duplicated shadow_model_vars
shadow_vars.append(new_v)
shadow_model_vars.append((new_v, v)) # only need to sync model_var from one tower
return shadow_model_vars
示例13: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def __init__(self, cfg, ckpt,
is_calibrated=True,
use_fcrn=False,
use_regressor=True,
image_dims=None,
mode='keyframe'):
self.cfg = cfg
self.ckpt = ckpt
self.mode = mode
self.use_fcrn = use_fcrn
self.use_regressor = use_regressor
self.is_calibrated = is_calibrated
if image_dims is not None:
self.image_dims = image_dims
else:
if cfg.STRUCTURE.MODE == 'concat':
self.image_dims = [cfg.INPUT.FRAMES, cfg.INPUT.HEIGHT, cfg.INPUT.WIDTH]
else:
self.image_dims = [None, cfg.INPUT.HEIGHT, cfg.INPUT.WIDTH]
self.outputs = {}
self._create_placeholders()
self._build_motion_graph()
self._build_depth_graph()
self._build_reprojection_graph()
self._build_visibility_graph()
self._build_point_cloud_graph()
self.depths = []
self.poses = []
if self.use_fcrn:
self._build_fcrn_graph()
self.saver = tf.train.Saver(tf.model_variables())
示例14: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def __init__(self, cfg, ckpt, n_keyframes=2, rate=2, use_fcrn=True,
viz=True, mode='global', image_dims=[None, 192, 1088]):
self.cfg = cfg
self.ckpt = ckpt
self.viz = viz
self.mode = mode
self.use_fcrn = use_fcrn
self.image_dims = image_dims
self.index = 0
self.keyframe_inds = []
self.images = []
self.depths = []
self.poses = []
# tracking config parameters
self.n_keyframes = n_keyframes # number of keyframes to use
self.rate = rate # how often to sample new frames
self.window = 3 # add edges if frames are within distance
# build tensorflow graphs
self.outputs = {}
self._create_placeholders()
self._build_motion_graph()
self._build_depth_graph()
self._build_reprojection_graph()
self._build_point_cloud_graph()
self.saver = tf.train.Saver(tf.model_variables())
示例15: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import model_variables [as 别名]
def __init__(self, cfg, ckpt, n_keyframes=1, rate=2, use_fcrn=True,
viz=True, mode='global', image_dims=[None, 480, 640]):
self.cfg = cfg
self.ckpt = ckpt
self.viz = viz
self.mode = mode
self.use_fcrn = use_fcrn
self.image_dims = image_dims
self.index = 0
self.keyframe_inds = []
self.images = []
self.depths = []
self.poses = []
# tracking config parameters
self.n_keyframes = n_keyframes # number of keyframes to use
self.rate = rate # how often to sample new frames
self.window = 3 # add edges if frames are within distance
# build tensorflow graphs
self.outputs = {}
self._create_placeholders()
self._build_motion_graph()
self._build_depth_graph()
self._build_reprojection_graph()
self._build_visibility_graph()
self._build_point_cloud_graph()
if self.use_fcrn:
self._build_fcrn_graph()
self.saver = tf.train.Saver(tf.model_variables())