当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.matrix_transpose方法代码示例

本文整理汇总了Python中tensorflow.matrix_transpose方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.matrix_transpose方法的具体用法?Python tensorflow.matrix_transpose怎么用?Python tensorflow.matrix_transpose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.matrix_transpose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _sample

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def _sample(self, n_samples):
        mean, u_tril, v_tril = self.mean, self.u_tril, self.v_tril
        if not self.is_reparameterized:
            mean = tf.stop_gradient(mean)
            u_tril = tf.stop_gradient(u_tril)
            v_tril = tf.stop_gradient(v_tril)

        def tile(t):
            new_shape = tf.concat([[n_samples], tf.ones_like(tf.shape(t))], 0)
            return tf.tile(tf.expand_dims(t, 0), new_shape)

        batch_u_tril = tile(u_tril)
        batch_v_tril = tile(v_tril)
        noise = tf.random_normal(
            tf.concat([[n_samples], tf.shape(mean)], axis=0), dtype=self.dtype)
        samples = mean + \
            tf.matmul(tf.matmul(batch_u_tril, noise),
                      tf.matrix_transpose(batch_v_tril))
        # Update static shape
        static_n_samples = n_samples if isinstance(n_samples, int) else None
        samples.set_shape(tf.TensorShape([static_n_samples])
                          .concatenate(self.get_batch_shape())
                          .concatenate(self.get_value_shape()))
        return samples 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:26,代码来源:multivariate.py

示例2: get_matrix_tree

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def get_matrix_tree(r, A):
    L = tf.reduce_sum(A, 1)
    L = tf.matrix_diag(L)
    L = L - A

    r_diag = tf.matrix_diag(r)
    LL = L + r_diag

    LL_inv = tf.matrix_inverse(LL)  #batch_l, doc_l, doc_l
    LL_inv_diag_ = tf.matrix_diag_part(LL_inv)

    d0 = tf.multiply(r, LL_inv_diag_)

    LL_inv_diag = tf.expand_dims(LL_inv_diag_, 2)

    tmp1 = tf.multiply(A, tf.matrix_transpose(LL_inv_diag))
    tmp2 = tf.multiply(A, tf.matrix_transpose(LL_inv))

    d = tmp1 - tmp2
    d = tf.concat([tf.expand_dims(d0,[1]), d], 1)
    return d 
开发者ID:misonuma,项目名称:strsum,代码行数:23,代码来源:components.py

示例3: _updated_mat

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def _updated_mat(self, mat, v, diag):
    # Get dense matrix defined by its square root, which is an update of `mat`:
    # A = (mat + v D v^T) (mat + v D v^T)^T
    # D is the diagonal matrix with `diag` on the diagonal.

    # If diag is None, then it defaults to the identity matrix, so DV^T = V^T
    if diag is None:
      diag_vt = tf.matrix_transpose(v)
    else:
      diag_mat = tf.matrix_diag(diag)
      diag_vt = tf.batch_matmul(diag_mat, v, adj_y=True)

    v_diag_vt = tf.batch_matmul(v, diag_vt)
    sqrt = mat + v_diag_vt
    a = tf.batch_matmul(sqrt, sqrt, adj_y=True)
    return a.eval() 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:18,代码来源:operator_pd_vdvt_update_test.py

示例4: decoder_rnn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def decoder_rnn(inputs, units, vertexes, edges, nodes, training, dropout_rate=0.):
    output = multi_dense_layers(inputs, units[:-1], activation=tf.nn.tanh, dropout_rate=dropout_rate, training=training)

    with tf.variable_scope('edges_logits'):
        edges_logits, _ = tf.nn.dynamic_rnn(cell=tf.nn.rnn_cell.LSTMCell(units[-1] * 4),
                                            inputs=tf.tile(tf.expand_dims(output, axis=1),
                                                           (1, vertexes, 1)), dtype=output.dtype)

        edges_logits = tf.layers.dense(edges_logits, edges * units[-1])
        edges_logits = tf.transpose(tf.reshape(edges_logits, (-1, vertexes, edges, units[-1])), (0, 2, 1, 3))
        edges_logits = tf.transpose(tf.matmul(edges_logits, tf.matrix_transpose(edges_logits)), (0, 2, 3, 1))
        edges_logits = tf.layers.dropout(edges_logits, dropout_rate, training=training)

    with tf.variable_scope('nodes_logits'):
        nodes_logits, _ = tf.nn.dynamic_rnn(cell=tf.nn.rnn_cell.LSTMCell(units[-1] * 4),
                                            inputs=tf.tile(tf.expand_dims(output, axis=1),
                                                           (1, vertexes, 1)), dtype=output.dtype)
        nodes_logits = tf.layers.dense(nodes_logits, nodes)
        nodes_logits = tf.layers.dropout(nodes_logits, dropout_rate, training=training)

    return edges_logits, nodes_logits 
开发者ID:nicola-decao,项目名称:MolGAN,代码行数:23,代码来源:__init__.py

示例5: inv_homography

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def inv_homography(k_s, k_t, rot, t, n_hat, a):
  """Computes inverse homography matrix between two cameras via a plane.

  Args:
      k_s: intrinsics for source cameras, [..., 3, 3] matrices
      k_t: intrinsics for target cameras, [..., 3, 3] matrices
      rot: relative rotations between source and target, [..., 3, 3] matrices
      t: [..., 3, 1], translations from source to target camera. Mapping a 3D
        point p from source to target is accomplished via rot * p + t.
      n_hat: [..., 1, 3], plane normal w.r.t source camera frame
      a: [..., 1, 1], plane equation displacement
  Returns:
      homography: [..., 3, 3] inverse homography matrices (homographies mapping
        pixel coordinates from target to source).
  """
  with tf.name_scope('inv_homography'):
    rot_t = tf.matrix_transpose(rot)
    k_t_inv = tf.matrix_inverse(k_t, name='k_t_inv')

    denom = a - tf.matmul(tf.matmul(n_hat, rot_t), t)
    numerator = tf.matmul(tf.matmul(tf.matmul(rot_t, t), n_hat), rot_t)
    inv_hom = tf.matmul(
        tf.matmul(k_s, rot_t + divide_safe(numerator, denom)),
        k_t_inv, name='inv_hom')
    return inv_hom 
开发者ID:google,项目名称:stereo-magnification,代码行数:27,代码来源:homography.py

示例6: define_projection_layer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def define_projection_layer(self, prediction, tied_weights=True):
        """
        Define the output word embedding layer
        Args:
            prediction: tf.tensor, the prediction from the model
            tied_weights: boolean, whether or not to tie weights from the input embedding layer

        Returns:
            Probability distribution over vocabulary
        """
        with tf.device("/cpu:0"):
            if tied_weights:
                # tie projection layer and embedding layer
                with tf.variable_scope("embedding_layer", reuse=tf.AUTO_REUSE):
                    softmax_w = tf.matrix_transpose(self.word_embeddings_tf)
                    softmax_b = tf.get_variable("softmax_b", [self.num_words])
                    _, l, k = prediction.shape.as_list()
                    prediction_reshaped = tf.reshape(prediction, [-1, k])
                    mult_out = tf.nn.bias_add(tf.matmul(prediction_reshaped, softmax_w), softmax_b)
                    projection_out = tf.reshape(mult_out, [-1, l, self.num_words])
            else:
                with tf.variable_scope("projection_layer", reuse=False):
                    projection_out = tf.layers.Dense(self.num_words)(prediction)
        return projection_out 
开发者ID:NervanaSystems,项目名称:nlp-architect,代码行数:26,代码来源:temporal_convolutional_network.py

示例7: _log_prob

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def _log_prob(self, given):
        mean, u_tril, v_tril = (self.path_param(self.mean),
                                self.path_param(self.u_tril),
                                self.path_param(self.v_tril))

        log_det_u = 2 * tf.reduce_sum(
            tf.log(tf.matrix_diag_part(u_tril)), axis=-1)
        log_det_v = 2 * tf.reduce_sum(
            tf.log(tf.matrix_diag_part(v_tril)), axis=-1)
        n_row = tf.cast(self._n_row, self.dtype)
        n_col = tf.cast(self._n_col, self.dtype)
        logZ = - (n_row * n_col) / 2. * \
            tf.log(2. * tf.constant(np.pi, dtype=self.dtype)) - \
            n_row / 2. * log_det_v - n_col / 2. * log_det_u
        # logZ.shape == batch_shape
        if self._check_numerics:
            logZ = tf.check_numerics(logZ, "log[det(Cov)]")

        y = given - mean
        y_with_last_dim_changed = tf.expand_dims(tf.ones(tf.shape(y)[:-1]), -1)
        Lu, _ = maybe_explicit_broadcast(
            u_tril, y_with_last_dim_changed,
            'MatrixVariateNormalCholesky.u_tril', 'expand_dims(given, -1)')
        y_with_sec_last_dim_changed = tf.expand_dims(tf.ones(
            tf.concat([tf.shape(y)[:-2], tf.shape(y)[-1:]], axis=0)), -1)
        Lv, _ = maybe_explicit_broadcast(
            v_tril, y_with_sec_last_dim_changed,
            'MatrixVariateNormalCholesky.v_tril',
            'expand_dims(given, -1)')
        x_Lb_inv_t = tf.matrix_triangular_solve(Lu, y, lower=True)
        x_t = tf.matrix_triangular_solve(Lv, tf.matrix_transpose(x_Lb_inv_t),
                                         lower=True)
        stoc_dist = -0.5 * tf.reduce_sum(tf.square(x_t), [-1, -2])
        return logZ + stoc_dist 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:36,代码来源:multivariate.py

示例8: gp_conditional

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def gp_conditional(z, fz, x, full_cov, kernel, Kzz_chol=None):
    '''
    GP gp_conditional f(x) | f(z)==fz
    :param z: shape [n_z, n_covariates]
    :param fz: shape [n_particles, n_z]
    :param x: shape [n_x, n_covariates]
    :return: a distribution with shape [n_particles, n_x]
    '''
    n_z = int(z.shape[0])
    n_particles = tf.shape(fz)[0]

    if Kzz_chol is None:
        Kzz_chol = tf.cholesky(kernel(z, z))

    # Mean[fx|fz] = Kxz @ inv(Kzz) @ fz; Cov[fx|z] = Kxx - Kxz @ inv(Kzz) @ Kzx
    # With ill-conditioned Kzz, the inverse is often asymmetric, which
    # breaks further cholesky decomposition. We compute a symmetric one.
    Kzz_chol_inv = tf.matrix_triangular_solve(Kzz_chol, tf.eye(n_z))
    Kzz_inv = tf.matmul(tf.transpose(Kzz_chol_inv), Kzz_chol_inv)
    Kxz = kernel(x, z)  # [n_x, n_z]
    Kxziz = tf.matmul(Kxz, Kzz_inv)
    mean_fx_given_fz = tf.matmul(fz, tf.matrix_transpose(Kxziz))

    if full_cov:
        cov_fx_given_fz = kernel(x, x) - tf.matmul(Kxziz, tf.transpose(Kxz))
        cov_fx_given_fz = tf.tile(
            tf.expand_dims(tf.cholesky(cov_fx_given_fz), 0),
            [n_particles, 1, 1])
        fx_given_fz = zs.distributions.MultivariateNormalCholesky(
            mean_fx_given_fz, cov_fx_given_fz)
    else:
        # diag(AA^T) = sum(A**2, axis=-1)
        var = kernel.Kdiag(x) - \
            tf.reduce_sum(tf.matmul(
                Kxz, tf.matrix_transpose(Kzz_chol_inv)) ** 2, axis=-1)
        std = tf.sqrt(var)
        fx_given_fz = zs.distributions.Normal(
            mean=mean_fx_given_fz, std=std, group_ndims=1)
    return fx_given_fz 
开发者ID:thu-ml,项目名称:zhusuan,代码行数:41,代码来源:utils.py

示例9: AffineTransformLayer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def AffineTransformLayer(Image, Param):
    '''
    Image: [N, IMGSIZE, IMGSIZE, 2]
    Param: [N, 6]
    return: [N, IMGSIZE, IMGSIZE, 2]
    '''

    A = tf.reshape(Param[:, 0:4], (-1, 2, 2))
    T = tf.reshape(Param[:, 4:6], (-1, 1, 2))

    A = tf.matrix_inverse(A)
    T = tf.matmul(-T, A)

    T = tf.reverse(T, (-1,))
    A = tf.matrix_transpose(A)

    def affine_transform(I, A, T):
        I = tf.reshape(I, [IMGSIZE, IMGSIZE])

        SrcPixels = tf.matmul(tf.reshape(Pixels, [IMGSIZE * IMGSIZE,2]), A) + T
        SrcPixels = tf.clip_by_value(SrcPixels, 0, IMGSIZE - 2)

        outPixelsMinMin = tf.to_float(tf.to_int32(SrcPixels))
        dxdy = SrcPixels - outPixelsMinMin
        dx = dxdy[:, 0]
        dy = dxdy[:, 1]

        outPixelsMinMin = tf.reshape(tf.to_int32(outPixelsMinMin),[IMGSIZE * IMGSIZE, 2])
        outPixelsMaxMin = tf.reshape(outPixelsMinMin + [1, 0], [IMGSIZE * IMGSIZE, 2])
        outPixelsMinMax = tf.reshape(outPixelsMinMin + [0, 1], [IMGSIZE * IMGSIZE, 2])
        outPixelsMaxMax = tf.reshape(outPixelsMinMin + [1, 1], [IMGSIZE * IMGSIZE, 2])

        OutImage = (1 - dx) * (1 - dy) * tf.gather_nd(I, outPixelsMinMin) + dx * (1 - dy) * tf.gather_nd(I, outPixelsMaxMin) \
                   + (1 - dx) * dy * tf.gather_nd(I, outPixelsMinMax) + dx * dy * tf.gather_nd(I, outPixelsMaxMax)

        return tf.reshape(OutImage,[IMGSIZE,IMGSIZE,1])

    return tf.map_fn(lambda args: affine_transform(args[0], args[1], args[2]),(Image, A, T), dtype=tf.float32) 
开发者ID:junhwanjang,项目名称:face_landmark_dnn,代码行数:40,代码来源:layers.py

示例10: gradient_svd

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def gradient_svd(op, ds, dU, dV):
	s, U, V = op.outputs

	u_sz = tf.squeeze(tf.slice(tf.shape(dU),[1],[1]))
	v_sz = tf.squeeze(tf.slice(tf.shape(dV),[1],[1]))
	s_sz = tf.squeeze(tf.slice(tf.shape(ds),[1],[1]))

	S = tf.matrix_diag(s)
	s_2 = tf.square(s)

	eye = tf.expand_dims(tf.eye(s_sz),0) 
	k = (1 - eye)/(tf.expand_dims(s_2,2)-tf.expand_dims(s_2,1) + eye)
	KT = tf.matrix_transpose(k)
	KT = removenan(KT)
	
	def msym(X):
		return (X+tf.matrix_transpose(X))
	
	def left_grad(U,S,V,dU,dV):
		U, V = (V, U); dU, dV = (dV, dU)
		D = tf.matmul(dU,tf.matrix_diag(1/(s+1e-8)))
		US = tf.matmul(U,S)
	
		grad = tf.matmul(D, V, transpose_b=True)\
			  +tf.matmul(tf.matmul(U,tf.matrix_diag(tf.matrix_diag_part(-tf.matmul(U,D,transpose_a=True)))), V, transpose_b=True)\
			  +tf.matmul(2*tf.matmul(US, msym(KT*(tf.matmul(V,-tf.matmul(V,tf.matmul(D,US,transpose_a=True)),transpose_a=True)))),V,transpose_b=True)
		grad = tf.matrix_transpose(grad)
		return grad

	def right_grad(U,S,V,dU,dV):
		US = tf.matmul(U,S)
		grad = tf.matmul(2*tf.matmul(US, msym(KT*(tf.matmul(V,dV,transpose_a=True))) ),V,transpose_b=True)
		return grad
	
	grad = tf.cond(tf.greater(v_sz, u_sz), lambda : left_grad(U,S,V,dU,dV), 
										   lambda : right_grad(U,S,V,dU,dV))
	
	return [grad] 
开发者ID:yyht,项目名称:BERT,代码行数:40,代码来源:svp.py

示例11: testNonBatchMatrix

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def testNonBatchMatrix(self):
    matrix = [[1, 2, 3], [4, 5, 6]]  # Shape (2, 3)
    expected_transposed = [[1, 4], [2, 5], [3, 6]]  # Shape (3, 2)
    with self.test_session():
      transposed = tf.matrix_transpose(matrix)
      self.assertEqual((3, 2), transposed.get_shape())
      self.assertAllEqual(expected_transposed, transposed.eval()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:array_ops_test.py

示例12: testBatchMatrix

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def testBatchMatrix(self):
    matrix_0 = [[1, 2, 3], [4, 5, 6]]
    matrix_0_t = [[1, 4], [2, 5], [3, 6]]
    matrix_1 = [[11, 22, 33], [44, 55, 66]]
    matrix_1_t = [[11, 44], [22, 55], [33, 66]]
    batch_matrix = [matrix_0, matrix_1]  # Shape (2, 2, 3)
    expected_transposed = [matrix_0_t, matrix_1_t]  # Shape (2, 3, 2)
    with self.test_session():
      transposed = tf.matrix_transpose(batch_matrix)
      self.assertEqual((2, 3, 2), transposed.get_shape())
      self.assertAllEqual(expected_transposed, transposed.eval()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:13,代码来源:array_ops_test.py

示例13: testNonBatchMatrixDynamicallyDefined

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def testNonBatchMatrixDynamicallyDefined(self):
    matrix = [[1, 2, 3], [4, 5, 6]]  # Shape (2, 3)
    expected_transposed = [[1, 4], [2, 5], [3, 6]]  # Shape (3, 2)
    with self.test_session():
      matrix_ph = tf.placeholder(tf.int32)
      transposed = tf.matrix_transpose(matrix_ph)
      self.assertAllEqual(
          expected_transposed,
          transposed.eval(feed_dict={matrix_ph: matrix})) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:11,代码来源:array_ops_test.py

示例14: testBatchMatrixDynamicallyDefined

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def testBatchMatrixDynamicallyDefined(self):
    matrix_0 = [[1, 2, 3], [4, 5, 6]]
    matrix_0_t = [[1, 4], [2, 5], [3, 6]]
    matrix_1 = [[11, 22, 33], [44, 55, 66]]
    matrix_1_t = [[11, 44], [22, 55], [33, 66]]
    batch_matrix = [matrix_0, matrix_1]  # Shape (2, 2, 3)
    expected_transposed = [matrix_0_t, matrix_1_t]  # Shape (2, 3, 2)
    with self.test_session():
      batch_matrix_ph = tf.placeholder(tf.int32)
      transposed = tf.matrix_transpose(batch_matrix_ph)
      self.assertAllEqual(
          expected_transposed,
          transposed.eval(feed_dict={batch_matrix_ph: batch_matrix})) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:15,代码来源:array_ops_test.py

示例15: testTensorWithStaticRankLessThanTwoRaisesBecauseNotAMatrix

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import matrix_transpose [as 别名]
def testTensorWithStaticRankLessThanTwoRaisesBecauseNotAMatrix(self):
    vector = [1, 2, 3]
    with self.test_session():
      with self.assertRaisesRegexp(ValueError, "should be a "):
        tf.matrix_transpose(vector) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:7,代码来源:array_ops_test.py


注:本文中的tensorflow.matrix_transpose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。