本文整理汇总了Python中tensorflow.log_sigmoid方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.log_sigmoid方法的具体用法?Python tensorflow.log_sigmoid怎么用?Python tensorflow.log_sigmoid使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.log_sigmoid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: M_step
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def M_step(log_R, log_activation, vote, lambda_val=0.01):
R_shape = tf.shape(log_R)
log_R = log_R + log_activation
R_sum_i = cl.reduce_sum(tf.exp(log_R), axis=-3, keepdims=True)
log_normalized_R = log_R - tf.reduce_logsumexp(log_R, axis=-3, keepdims=True)
pose = cl.reduce_sum(vote * tf.exp(log_normalized_R), axis=-3, keepdims=True)
log_var = tf.reduce_logsumexp(log_normalized_R + cl.log(tf.square(vote - pose)), axis=-3, keepdims=True)
beta_v = tf.get_variable('beta_v',
shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
initializer=tf.truncated_normal_initializer(mean=15., stddev=3.))
cost = R_sum_i * (beta_v + 0.5 * log_var)
beta_a = tf.get_variable('beta_a',
shape=[1 for i in range(len(pose.shape) - 2)] + [pose.shape[-2], 1],
initializer=tf.truncated_normal_initializer(mean=100.0, stddev=10))
cost_sum_h = cl.reduce_sum(cost, axis=-1, keepdims=True)
logit = lambda_val * (beta_a - cost_sum_h)
log_activation = tf.log_sigmoid(logit)
return(pose, log_var, log_activation)
示例2: build_graph
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def build_graph(self):
phs, inps = networks.build_inputs(
self._observation_space, self._action_space, scale=self._scale
)
self._obs_ph, self._act_ph, self._next_obs_ph, self._done_ph = phs
self.obs_input, self.act_input, _, self.done_input = inps
with tf.variable_scope("discrim_network"):
self._disc_logits_gen_is_high, self._disc_mlp = self._build_discrim_net(
[self.obs_input, self.act_input], **self._build_discrim_net_kwargs
)
self._policy_test_reward = self._policy_train_reward = -tf.log_sigmoid(
self._disc_logits_gen_is_high
)
self._disc_loss = tf.nn.sigmoid_cross_entropy_with_logits(
logits=self._disc_logits_gen_is_high,
labels=tf.cast(self.labels_gen_is_one_ph, tf.float32),
)
示例3: gan_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def gan_loss(x, gz, discriminator):
"""Original GAN loss.
Args:
x: Batch of real samples.
gz: Batch of generated samples.
discriminator: Discriminator function.
Returns:
d_loss: Discriminator loss.
g_loss: Generator loss.
"""
dx = discriminator(x)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
dgz = discriminator(gz)
d_loss = -tf.reduce_mean(tf.log_sigmoid(dx) + tf.log_sigmoid(1 - dgz))
g_loss = -tf.reduce_mean(tf.log_sigmoid(dgz))
return d_loss, g_loss
示例4: discriminator
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def discriminator(encodings,
sequence_lengths,
lang_ids,
num_layers=3,
hidden_size=1024,
dropout=0.3):
"""Discriminates the encoder outputs against lang_ids.
Args:
encodings: The encoder outputs of shape [batch_size, max_time, hidden_size].
sequence_lengths: The length of each sequence of shape [batch_size].
lang_ids: The true lang id of each sequence of shape [batch_size].
num_layers: The number of layers of the discriminator.
hidden_size: The hidden size of the discriminator.
dropout: The dropout to apply on each discriminator layer output.
Returns:
A tuple with: the discriminator loss (L_d) and the adversarial loss (L_adv).
"""
x = encodings
for _ in range(num_layers):
x = tf.nn.dropout(x, 1.0 - dropout)
x = tf.layers.dense(x, hidden_size, activation=tf.nn.leaky_relu)
x = tf.nn.dropout(x, 1.0 - dropout)
y = tf.layers.dense(x, 1)
mask = tf.sequence_mask(
sequence_lengths, maxlen=tf.shape(encodings)[1], dtype=tf.float32)
mask = tf.expand_dims(mask, -1)
y = tf.log_sigmoid(y) * mask
y = tf.reduce_sum(y, axis=1)
y = tf.exp(y)
l_d = binary_cross_entropy(y, lang_ids, smoothing=0.1)
l_adv = binary_cross_entropy(y, 1 - lang_ids)
return l_d, l_adv
示例5: _apply
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def _apply(self, scores_pos, scores_neg):
"""Apply the loss function.
Parameters
----------
scores_pos : tf.Tensor, shape [n, 1]
A tensor of scores assigned to positive statements.
scores_neg : tf.Tensor, shape [n*negative_count, 1]
A tensor of scores assigned to negative statements.
Returns
-------
loss : tf.Tensor
The loss value that must be minimized.
"""
margin = tf.constant(self._loss_parameters['margin'], dtype=tf.float32, name='margin')
alpha = tf.constant(self._loss_parameters['alpha'], dtype=tf.float32, name='alpha')
# Compute p(neg_samples) based on eq 4
scores_neg_reshaped = tf.reshape(scores_neg, [self._loss_parameters['eta'], tf.shape(scores_pos)[0]])
p_neg = tf.nn.softmax(alpha * scores_neg_reshaped, axis=0)
# Compute Loss based on eg 5
loss = tf.reduce_sum(-tf.log_sigmoid(margin - tf.negative(scores_pos))) - tf.reduce_sum(
tf.multiply(p_neg, tf.log_sigmoid(tf.negative(scores_neg_reshaped) - margin)))
return loss
示例6: log_prob
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def log_prob(self, param_batch, sample_vecs):
sample_vecs = tf.cast(sample_vecs, param_batch.dtype)
log_probs_on = tf.log_sigmoid(param_batch) * sample_vecs
log_probs_off = tf.log_sigmoid(-param_batch) * (1-sample_vecs)
return tf.reduce_sum(log_probs_on + log_probs_off, axis=-1)
示例7: entropy
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def entropy(self, param_batch):
ent_on = tf.log_sigmoid(param_batch) * tf.sigmoid(param_batch)
ent_off = tf.log_sigmoid(-param_batch) * tf.sigmoid(-param_batch)
return tf.negative(tf.reduce_sum(ent_on + ent_off, axis=-1))
示例8: kl_divergence
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def kl_divergence(self, param_batch_1, param_batch_2):
probs_on = tf.sigmoid(param_batch_1)
probs_off = tf.sigmoid(-param_batch_1)
log_diff_on = tf.log_sigmoid(param_batch_1) - tf.log_sigmoid(param_batch_2)
log_diff_off = tf.log_sigmoid(-param_batch_1) - tf.log_sigmoid(-param_batch_2)
kls = probs_on*log_diff_on + probs_off*log_diff_off
return tf.reduce_sum(kls, axis=-1)
示例9: forward_propagation
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def forward_propagation(self):
with tf.variable_scope('gem_embedding'):
h = tf.get_variable(name='init_embedding', shape=[self.nodes, self.encoding],
initializer=tf.contrib.layers.xavier_initializer())
for i in range(0, self.hop):
f = GEMLayer(self.placeholders, self.nodes, self.meta, self.embedding, self.encoding)
gem_out = f(inputs=h)
h = tf.reshape(gem_out, [self.nodes, self.encoding])
print('GEM embedding over!')
with tf.variable_scope('classification'):
batch_data = tf.matmul(tf.one_hot(self.placeholders['batch_index'], self.nodes), h)
W = tf.get_variable(name='weights',
shape=[self.encoding, self.class_size],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(name='bias', shape=[1, self.class_size], initializer=tf.zeros_initializer())
tf.transpose(batch_data, perm=[0, 1])
logits = tf.matmul(batch_data, W) + b
u = tf.get_variable(name='u',
shape=[1, self.encoding],
initializer=tf.contrib.layers.xavier_initializer())
loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=self.placeholders['t'], logits=logits)
# TODO
# loss = -tf.reduce_sum(
# tf.log_sigmoid(self.placeholders['t'] * tf.matmul(u, tf.transpose(batch_data, perm=[1, 0]))))
# return loss, logits
return loss, tf.nn.sigmoid(logits)
示例10: logistic_logcdf
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def logistic_logcdf(*, x, mean, logscale):
"""
log cdf of logistic distribution
this operates elementwise
"""
z = (x - mean) * tf.exp(-logscale)
return tf.log_sigmoid(z)
示例11: distributed_classifier
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def distributed_classifier(config, pooled_output,
num_labels, labels,
dropout_prob,
ratio_weight=None):
output_layer = pooled_output
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
if config.get("label_type", "single_label") == "single_label":
if config.get("loss", "entropy") == "entropy":
# per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
# logits=logits,
# labels=tf.stop_gradient(labels))
one_hot_labels = tf.one_hot(labels, num_labels)
per_example_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(one_hot_labels),
)
elif config.get("loss", "entropy") == "focal_loss":
per_example_loss = loss_utils.focal_loss_multi_v1(config,
logits=logits,
labels=labels)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
elif config.get("label_type", "single_label") == "multi_label":
# logits = tf.log_sigmoid(logits)
per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(labels))
per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
else:
raise NotImplementedError()
示例12: siamese_classifier
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def siamese_classifier(config, pooled_output, num_labels,
labels, dropout_prob,
ratio_weight=None):
if config.get("output_layer", "interaction") == "interaction":
print("==apply interaction layer==")
repres_a = pooled_output[0]
repres_b = pooled_output[1]
output_layer = tf.concat([repres_a, repres_b, tf.abs(repres_a-repres_b), repres_a*repres_b], axis=-1)
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
print("==logits shape==", logits.get_shape())
if config.get("label_type", "single_label") == "single_label":
if config.get("loss", "entropy") == "entropy":
# per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
# logits=logits,
# labels=tf.stop_gradient(labels))
one_hot_labels = tf.one_hot(labels, num_labels)
per_example_loss = tf.nn.softmax_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(one_hot_labels),
)
elif config.get("loss", "entropy") == "focal_loss":
per_example_loss, _ = loss_utils.focal_loss_multi_v1(config,
logits=logits,
labels=labels)
print("==per_example_loss shape==", per_example_loss.get_shape())
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
elif config.get("label_type", "single_label") == "multi_label":
# logits = tf.log_sigmoid(logits)
per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(labels))
per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
else:
raise NotImplementedError()
示例13: distributed_classifier
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def distributed_classifier(config, pooled_output,
num_labels, labels,
dropout_prob,
ratio_weight=None):
output_layer = pooled_output
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
if config.get("label_type", "single_label") == "single_label":
if config.get("loss", "entropy") == "entropy":
per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(labels))
elif config.get("loss", "entropy") == "focal_loss":
per_example_loss = loss_utils.focal_loss_multi_v1(config,
logits=logits,
labels=labels)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
elif config.get("label_type", "single_label") == "multi_label":
logits = tf.log_sigmoid(logits)
per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(labels))
per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
else:
raise NotImplementedError()
示例14: siamese_classifier
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def siamese_classifier(config, pooled_output, num_labels,
labels, dropout_prob,
ratio_weight=None):
if config.get("output_layer", "interaction") == "interaction":
print("==apply interaction layer==")
repres_a = pooled_output[0]
repres_b = pooled_output[1]
output_layer = tf.concat([repres_a, repres_b, tf.abs(repres_a-repres_b), repres_a*repres_b], axis=-1)
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
output_layer = tf.nn.dropout(output_layer, keep_prob=1 - dropout_prob)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
print("==logits shape==", logits.get_shape())
if config.get("label_type", "single_label") == "single_label":
if config.get("loss", "entropy") == "entropy":
per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(labels))
elif config.get("loss", "entropy") == "focal_loss":
per_example_loss, _ = loss_utils.focal_loss_multi_v1(config,
logits=logits,
labels=labels)
print("==per_example_loss shape==", per_example_loss.get_shape())
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
elif config.get("label_type", "single_label") == "multi_label":
logits = tf.log_sigmoid(logits)
per_example_loss = tf.nn.sigmoid_cross_entropy_with_logits(
logits=logits,
labels=tf.stop_gradient(labels))
per_example_loss = tf.reduce_mean(per_example_loss, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits)
else:
raise NotImplementedError()
示例15: _keypoints_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log_sigmoid [as 别名]
def _keypoints_loss(self, keypoints, gbbox_yx, gbbox_y, gbbox_x, gbbox_h, gbbox_w,
classid, meshgrid_y, meshgrid_x, pshape):
sigma = self._gaussian_radius(gbbox_h, gbbox_w, 0.7)
gbbox_y = tf.reshape(gbbox_y, [-1, 1, 1])
gbbox_x = tf.reshape(gbbox_x, [-1, 1, 1])
sigma = tf.reshape(sigma, [-1, 1, 1])
num_g = tf.shape(gbbox_y)[0]
meshgrid_y = tf.expand_dims(meshgrid_y, 0)
meshgrid_y = tf.tile(meshgrid_y, [num_g, 1, 1])
meshgrid_x = tf.expand_dims(meshgrid_x, 0)
meshgrid_x = tf.tile(meshgrid_x, [num_g, 1, 1])
keyp_penalty_reduce = tf.exp(-((gbbox_y-meshgrid_y)**2 + (gbbox_x-meshgrid_x)**2)/(2*sigma**2))
zero_like_keyp = tf.expand_dims(tf.zeros(pshape, dtype=tf.float32), axis=-1)
reduction = []
gt_keypoints = []
for i in range(self.num_classes):
exist_i = tf.equal(classid, i)
reduce_i = tf.boolean_mask(keyp_penalty_reduce, exist_i, axis=0)
reduce_i = tf.cond(
tf.equal(tf.shape(reduce_i)[0], 0),
lambda: zero_like_keyp,
lambda: tf.expand_dims(tf.reduce_max(reduce_i, axis=0), axis=-1)
)
reduction.append(reduce_i)
gbbox_yx_i = tf.boolean_mask(gbbox_yx, exist_i)
gt_keypoints_i = tf.cond(
tf.equal(tf.shape(gbbox_yx_i)[0], 0),
lambda: zero_like_keyp,
lambda: tf.expand_dims(tf.sparse.to_dense(tf.sparse.SparseTensor(gbbox_yx_i, tf.ones_like(gbbox_yx_i[..., 0], tf.float32), dense_shape=pshape), validate_indices=False),
axis=-1)
)
gt_keypoints.append(gt_keypoints_i)
reduction = tf.concat(reduction, axis=-1)
gt_keypoints = tf.concat(gt_keypoints, axis=-1)
keypoints_pos_loss = -tf.pow(1.-tf.sigmoid(keypoints), 2.) * tf.log_sigmoid(keypoints) * gt_keypoints
keypoints_neg_loss = -tf.pow(1.-reduction, 4) * tf.pow(tf.sigmoid(keypoints), 2.) * (-keypoints+tf.log_sigmoid(keypoints)) * (1.-gt_keypoints)
keypoints_loss = tf.reduce_sum(keypoints_pos_loss) / tf.cast(num_g, tf.float32) + tf.reduce_sum(keypoints_neg_loss) / tf.cast(num_g, tf.float32)
return keypoints_loss
# from cornernet