当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.log方法代码示例

本文整理汇总了Python中tensorflow.log方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.log方法的具体用法?Python tensorflow.log怎么用?Python tensorflow.log使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.log方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _compute_delta

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def _compute_delta(self, log_moments, eps):
    """Compute delta for given log_moments and eps.

    Args:
      log_moments: the log moments of privacy loss, in the form of pairs
        of (moment_order, log_moment)
      eps: the target epsilon.
    Returns:
      delta
    """
    min_delta = 1.0
    for moment_order, log_moment in log_moments:
      if math.isinf(log_moment) or math.isnan(log_moment):
        sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
        continue
      if log_moment < moment_order * eps:
        min_delta = min(min_delta,
                        math.exp(log_moment - moment_order * eps))
    return min_delta 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:accountant.py

示例2: log_sum_exp

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def log_sum_exp(x_k):
  """Computes log \sum exp in a numerically stable way.
    log ( sum_i exp(x_i) )
    log ( sum_i exp(x_i - m + m) ),       with m = max(x_i)
    log ( sum_i exp(x_i - m)*exp(m) )
    log ( sum_i exp(x_i - m) + m

  Args:
    x_k - k -dimensional list of arguments to log_sum_exp.

  Returns:
    log_sum_exp of the arguments.
  """
  m = tf.reduce_max(x_k)
  x1_k = x_k - m
  u_k = tf.exp(x1_k)
  z = tf.reduce_sum(u_k)
  return tf.log(z) + m 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:utils.py

示例3: gaussian_pos_log_likelihood

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def gaussian_pos_log_likelihood(unused_mean, logvar, noise):
  """Gaussian log-likelihood function for a posterior in VAE

  Note: This function is specialized for a posterior distribution, that has the
  form of z = mean + sigma * noise.

  Args:
    unused_mean: ignore
    logvar: The log variance of the distribution
    noise: The noise used in the sampling of the posterior.

  Returns:
    The log-likelihood under the Gaussian model.
  """
  # ln N(z; mean, sigma) = - ln(sigma) - 0.5 ln 2pi - noise^2 / 2
  return - 0.5 * (logvar + np.log(2 * np.pi) + tf.square(noise)) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:distributions.py

示例4: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def __init__(self, batch_size, z_size, mean, logvar):
    """Create a diagonal gaussian distribution.

    Args:
      batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
      z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
      mean: The N-D mean of the distribution.
      logvar: The N-D log variance of the diagonal distribution.
    """
    size__xz = [None, z_size]
    self.mean = mean            # bxn already
    self.logvar = logvar        # bxn already
    self.noise = noise = tf.random_normal(tf.shape(logvar))
    self.sample = mean + tf.exp(0.5 * logvar) * noise
    mean.set_shape(size__xz)
    logvar.set_shape(size__xz)
    self.sample.set_shape(size__xz) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:distributions.py

示例5: logp

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def logp(self, z=None):
    """Compute the log-likelihood under the distribution.

    Args:
      z (optional): value to compute likelihood for, if None, use sample.

    Returns:
      The likelihood of z under the model.
    """
    if z is None:
      z = self.sample

    # This is needed to make sure that the gradients are simple.
    # The value of the function shouldn't change.
    if z == self.sample:
      return gaussian_pos_log_likelihood(self.mean, self.logvar, self.noise)

    return diag_gaussian_log_likelihood(z, self.mean, self.logvar) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:distributions.py

示例6: logp_t

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def logp_t(self, z_t_bxu, z_tm1_bxu=None):
    """Compute the log-likelihood under the distribution for a given time t,
    not the whole sequence.

    Args:
      z_t_bxu: sample to compute likelihood for at time t.
      z_tm1_bxu (optional): sample condition probability of z_t upon.

    Returns:
      The likelihood of p_t under the model at time t. i.e.
        p(z_t|z_tm1) = N(z_tm1 * phis, eps^2)

    """
    if z_tm1_bxu is None:
      return diag_gaussian_log_likelihood(z_t_bxu, self.pmeans_bxu,
                                          self.logpvars_bxu)
    else:
      means_t_bxu = self.pmeans_bxu + self.phis_bxu * z_tm1_bxu
      logp_tgtm1_bxu = diag_gaussian_log_likelihood(z_t_bxu,
                                                    means_t_bxu,
                                                    self.logevars_bxu)
      return logp_tgtm1_bxu 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:24,代码来源:distributions.py

示例7: _BuildLoss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def _BuildLoss(self):
    # 1. reconstr_loss seems doesn't do better than l2 loss.
    # 2. Only works when using reduce_mean. reduce_sum doesn't work.
    # 3. It seems kl loss doesn't play an important role.
    self.loss = 0
    with tf.variable_scope('loss'):
      if self.params['l2_loss']:
        l2_loss = tf.reduce_mean(tf.square(self.diff_output - self.diffs[1]))
        tf.summary.scalar('l2_loss', l2_loss)
        self.loss += l2_loss
      if self.params['reconstr_loss']:
        reconstr_loss = (-tf.reduce_mean(
            self.diffs[1] * (1e-10 + self.diff_output) +
            (1-self.diffs[1]) * tf.log(1e-10 + 1 - self.diff_output)))
        reconstr_loss = tf.check_numerics(reconstr_loss, 'reconstr_loss')
        tf.summary.scalar('reconstr_loss', reconstr_loss)
        self.loss += reconstr_loss
      if self.params['kl_loss']:
        kl_loss = (0.5 * tf.reduce_mean(
            tf.square(self.z_mean) + tf.square(self.z_stddev) -
            2 * self.z_stddev_log - 1))
        tf.summary.scalar('kl_loss', kl_loss)
        self.loss += kl_loss

      tf.summary.scalar('loss', self.loss) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:27,代码来源:model.py

示例8: log_prob_action

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def log_prob_action(self, action, logits,
                      sampling_dim, act_dim, act_type):
    """Calculate log-prob of action sampled from distribution."""
    if self.env_spec.is_discrete(act_type):
      act_log_prob = tf.reduce_sum(
          tf.one_hot(action, act_dim) * tf.nn.log_softmax(logits), -1)
    elif self.env_spec.is_box(act_type):
      means = logits[:, :sampling_dim / 2]
      std = logits[:, sampling_dim / 2:]
      act_log_prob = (- 0.5 * tf.log(2 * np.pi * tf.square(std))
                      - 0.5 * tf.square(action - means) / tf.square(std))
      act_log_prob = tf.reduce_sum(act_log_prob, -1)
    else:
      assert False

    return act_log_prob 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:policy.py

示例9: single_step

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def single_step(self, prev, cur, greedy=False):
    """Single RNN step.  Equivalently, single-time-step sampled actions."""
    prev_internal_state, prev_actions, _, _, _, _ = prev
    obs, actions = cur  # state observed and action taken at this time step

    # feed into RNN cell
    output, next_state = self.core(
        obs, prev_internal_state, prev_actions)

    # sample actions with values and log-probs
    (actions, logits, log_probs,
     entropy, self_kl) = self.sample_actions(
        output, actions=actions, greedy=greedy)

    return (next_state, tuple(actions), tuple(logits), tuple(log_probs),
            tuple(entropy), tuple(self_kl)) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:policy.py

示例10: build_graph

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def build_graph(self):
        #keras.backend.clear_session() # clear session/graph    
        self.optimizer = keras.optimizers.Adam(lr=self.lr, decay=self.decay)

        self.model = Seq2Seq_MVE_subnets_swish(id_embd=True, time_embd=True,
            lr=self.lr, decay=self.decay,
            num_input_features=self.num_input_features, num_output_features=self.num_output_features,
            num_decoder_features=self.num_decoder_features, layers=self.layers,
            loss=self.loss, regulariser=self.regulariser)

        def _mve_loss(y_true, y_pred):
            pred_u = crop(2,0,3)(y_pred)
            pred_sig = crop(2,3,6)(y_pred)
            print(pred_sig)
            #exp_sig = tf.exp(pred_sig) # avoid pred_sig is too small such as zero    
            #precision = 1./exp_sig
            precision = 1./pred_sig
            #log_loss= 0.5*tf.log(exp_sig)+0.5*precision*((pred_u-y_true)**2)
            log_loss= 0.5*tf.log(pred_sig)+0.5*precision*((pred_u-y_true)**2)            
          
            log_loss=tf.reduce_mean(log_loss)
            return log_loss

        print(self.model.summary())
        self.model.compile(optimizer = self.optimizer, loss=_mve_loss) 
开发者ID:BruceBinBoxing,项目名称:Deep_Learning_Weather_Forecasting,代码行数:27,代码来源:competition_model_class.py

示例11: bottleneck

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def bottleneck(self, x):  # pylint: disable=arguments-differ
    hparams = self.hparams
    if hparams.unordered:
      return super(AutoencoderOrderedDiscrete, self).bottleneck(x)
    noise = hparams.bottleneck_noise
    hparams.bottleneck_noise = 0.0  # We'll add noise below.
    x, loss = discretization.parametrized_bottleneck(x, hparams)
    hparams.bottleneck_noise = noise
    if hparams.mode == tf.estimator.ModeKeys.TRAIN:
      # We want a number p such that p^bottleneck_bits = 1 - noise.
      # So log(p) * bottleneck_bits = log(noise)
      log_p = tf.log(1 - float(noise) / 2) / float(hparams.bottleneck_bits)
      # Probabilities of flipping are p, p^2, p^3, ..., p^bottleneck_bits.
      noise_mask = 1.0 - tf.exp(tf.cumsum(tf.zeros_like(x) + log_p, axis=-1))
      # Having the no-noise mask, we can make noise just uniformly at random.
      ordered_noise = tf.random_uniform(tf.shape(x))
      # We want our noise to be 1s at the start and random {-1, 1} bits later.
      ordered_noise = tf.to_float(tf.less(noise_mask, ordered_noise))
      # Now we flip the bits of x on the noisy positions (ordered and normal).
      x *= 2.0 * ordered_noise - 1
    return x, loss 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:23,代码来源:autoencoders.py

示例12: lossfn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def lossfn(real_input, fake_input, compress, hparams, lsgan, name):
  """Loss function."""
  eps = 1e-12
  with tf.variable_scope(name):
    d1 = discriminator(real_input, compress, hparams, "discriminator")
    d2 = discriminator(fake_input, compress, hparams, "discriminator",
                       reuse=True)
    if lsgan:
      dloss = tf.reduce_mean(
          tf.squared_difference(d1, 0.9)) + tf.reduce_mean(tf.square(d2))
      gloss = tf.reduce_mean(tf.squared_difference(d2, 0.9))
      loss = (dloss + gloss)/2
    else:  # cross_entropy
      dloss = -tf.reduce_mean(
          tf.log(d1 + eps)) - tf.reduce_mean(tf.log(1 - d2 + eps))
      gloss = -tf.reduce_mean(tf.log(d2 + eps))
      loss = (dloss + gloss)/2
    return loss 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:20,代码来源:cycle_gan.py

示例13: get_timing_signal

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = tf.to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:24,代码来源:common_layers.py

示例14: binary_cross_entropy

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def binary_cross_entropy(x, y, smoothing=0, epsilon=1e-12):
  """Computes the averaged binary cross entropy.

  bce = y*log(x) + (1-y)*log(1-x)

  Args:
    x: The predicted labels.
    y: The true labels.
    smoothing: The label smoothing coefficient.

  Returns:
    The cross entropy.
  """
  y = tf.to_float(y)
  if smoothing > 0:
    smoothing *= 2
    y = y * (1 - smoothing) + 0.5 * smoothing
  return -tf.reduce_mean(tf.log(x + epsilon) * y + tf.log(1.0 - x + epsilon) * (1 - y)) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:20,代码来源:train.py

示例15: sample_dtype

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import log [as 别名]
def sample_dtype(self):
        return tf.int32

# WRONG SECOND DERIVATIVES
# class CategoricalPd(Pd):
#     def __init__(self, logits):
#         self.logits = logits
#         self.ps = tf.nn.softmax(logits)
#     @classmethod
#     def fromflat(cls, flat):
#         return cls(flat)
#     def flatparam(self):
#         return self.logits
#     def mode(self):
#         return U.argmax(self.logits, axis=-1)
#     def logp(self, x):
#         return -tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits, x)
#     def kl(self, other):
#         return tf.nn.softmax_cross_entropy_with_logits(other.logits, self.ps) \
#                 - tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def entropy(self):
#         return tf.nn.softmax_cross_entropy_with_logits(self.logits, self.ps)
#     def sample(self):
#         u = tf.random_uniform(tf.shape(self.logits))
#         return U.argmax(self.logits - tf.log(-tf.log(u)), axis=-1) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:27,代码来源:distributions.py


注:本文中的tensorflow.log方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。