本文整理汇总了Python中tensorflow.less方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.less方法的具体用法?Python tensorflow.less怎么用?Python tensorflow.less使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.less方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _inv_preemphasis
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def _inv_preemphasis(x):
N = tf.shape(x)[0]
i = tf.constant(0)
W = tf.zeros(shape=tf.shape(x), dtype=tf.float32)
def condition(i, y):
return tf.less(i, N)
def body(i, y):
tmp = tf.slice(x, [0], [i + 1])
tmp = tf.concat([tf.zeros([N - i - 1]), tmp], -1)
y = hparams.preemphasis * y + tmp
i = tf.add(i, 1)
return [i, y]
final = tf.while_loop(condition, body, [i, W])
y = final[1]
return y
示例2: get_hash_slots
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def get_hash_slots(self, query):
"""Gets hashed-to buckets for batch of queries.
Args:
query: 2-d Tensor of query vectors.
Returns:
A list of hashed-to buckets for each hash function.
"""
binary_hash = [
tf.less(tf.matmul(query, self.hash_vecs[i], transpose_b=True), 0)
for i in xrange(self.num_libraries)]
hash_slot_idxs = [
tf.reduce_sum(
tf.to_int32(binary_hash[i]) *
tf.constant([[2 ** i for i in xrange(self.num_hashes)]],
dtype=tf.int32), 1)
for i in xrange(self.num_libraries)]
return hash_slot_idxs
示例3: _create_learning_rate
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def _create_learning_rate(hyperparams, step_var):
"""Creates learning rate var, with decay and switching for CompositeOptimizer.
Args:
hyperparams: a GridPoint proto containing optimizer spec, particularly
learning_method to determine optimizer class to use.
step_var: tf.Variable, global training step.
Returns:
a scalar `Tensor`, the learning rate based on current step and hyperparams.
"""
if hyperparams.learning_method != 'composite':
base_rate = hyperparams.learning_rate
else:
spec = hyperparams.composite_optimizer_spec
switch = tf.less(step_var, spec.switch_after_steps)
base_rate = tf.cond(switch, lambda: tf.constant(spec.method1.learning_rate),
lambda: tf.constant(spec.method2.learning_rate))
return tf.train.exponential_decay(
base_rate,
step_var,
hyperparams.decay_steps,
hyperparams.decay_base,
staircase=hyperparams.decay_staircase)
示例4: _compute_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def _compute_loss(self, prediction_tensor, target_tensor, weights):
"""Compute loss function.
Args:
prediction_tensor: A float tensor of shape [batch_size, num_anchors,
code_size] representing the (encoded) predicted locations of objects.
target_tensor: A float tensor of shape [batch_size, num_anchors,
code_size] representing the regression targets
weights: a float tensor of shape [batch_size, num_anchors]
Returns:
loss: a (scalar) tensor representing the value of the loss function
"""
diff = prediction_tensor - target_tensor
abs_diff = tf.abs(diff)
abs_diff_lt_1 = tf.less(abs_diff, 1)
anchorwise_smooth_l1norm = tf.reduce_sum(
tf.where(abs_diff_lt_1, 0.5 * tf.square(abs_diff), abs_diff - 0.5),
2) * weights
if self._anchorwise_output:
return anchorwise_smooth_l1norm
return tf.reduce_sum(anchorwise_smooth_l1norm)
示例5: memory_run
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def memory_run(step, nmaps, mem_size, batch_size, vocab_size,
global_step, do_training, update_mem, decay_factor, num_gpus,
target_emb_weights, output_w, gpu_targets_tn, it):
"""Run memory."""
q = step[:, 0, it, :]
mlabels = gpu_targets_tn[:, it, 0]
res, mask, mem_loss = memory_call(
q, mlabels, nmaps, mem_size, vocab_size, num_gpus, update_mem)
res = tf.gather(target_emb_weights, res) * tf.expand_dims(mask[:, 0], 1)
# Mix gold and original in the first steps, 20% later.
gold = tf.nn.dropout(tf.gather(target_emb_weights, mlabels), 0.7)
use_gold = 1.0 - tf.cast(global_step, tf.float32) / (1000. * decay_factor)
use_gold = tf.maximum(use_gold, 0.2) * do_training
mem = tf.cond(tf.less(tf.random_uniform([]), use_gold),
lambda: use_gold * gold + (1.0 - use_gold) * res,
lambda: res)
mem = tf.reshape(mem, [-1, 1, 1, nmaps])
return mem, mem_loss, update_mem
示例6: dsn_loss_coefficient
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def dsn_loss_coefficient(params):
"""The global_step-dependent weight that specifies when to kick in DSN losses.
Args:
params: A dictionary of parameters. Expecting 'domain_separation_startpoint'
Returns:
A weight to that effectively enables or disables the DSN-related losses,
i.e. similarity, difference, and reconstruction losses.
"""
return tf.where(
tf.less(slim.get_or_create_global_step(),
params['domain_separation_startpoint']), 1e-10, 1.0)
################################################################################
# MODEL CREATION
################################################################################
示例7: neural_gpu_body
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def neural_gpu_body(inputs, hparams, name=None):
"""The core Neural GPU."""
with tf.variable_scope(name, "neural_gpu"):
def step(state, inp): # pylint: disable=missing-docstring
x = tf.nn.dropout(state, 1.0 - hparams.dropout)
for layer in range(hparams.num_hidden_layers):
x = common_layers.conv_gru(
x, (hparams.kernel_height, hparams.kernel_width),
hparams.hidden_size,
name="cgru_%d" % layer)
# Padding input is zeroed-out in the modality, we check this by summing.
padding_inp = tf.less(tf.reduce_sum(tf.abs(inp), axis=[1, 2]), 0.00001)
new_state = tf.where(padding_inp, state, x) # No-op where inp is padding.
return new_state
return tf.foldl(
step,
tf.transpose(inputs, [1, 0, 2, 3]),
initializer=inputs,
parallel_iterations=1,
swap_memory=True)
示例8: sample
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def sample(self, features=None):
del features
hp = self.hparams
div_x = 2**hp.num_hidden_layers
div_y = 1 if self.is1d else 2**hp.num_hidden_layers
size = [
hp.batch_size, hp.sample_height // div_x, hp.sample_width // div_y,
hp.bottleneck_bits
]
rand = tf.random_uniform(size)
res = 2.0 * tf.to_float(tf.less(0.5, rand)) - 1.0
# If you want to set some first bits to a fixed value, do this:
# fixed = tf.zeros_like(rand) - 1.0
# nbits = 3
# res = tf.concat([fixed[:, :, :, :nbits], res[:, :, :, nbits:]], axis=-1)
return res
示例9: bottleneck
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def bottleneck(self, x): # pylint: disable=arguments-differ
hparams = self.hparams
if hparams.unordered:
return super(AutoencoderOrderedDiscrete, self).bottleneck(x)
noise = hparams.bottleneck_noise
hparams.bottleneck_noise = 0.0 # We'll add noise below.
x, loss = discretization.parametrized_bottleneck(x, hparams)
hparams.bottleneck_noise = noise
if hparams.mode == tf.estimator.ModeKeys.TRAIN:
# We want a number p such that p^bottleneck_bits = 1 - noise.
# So log(p) * bottleneck_bits = log(noise)
log_p = tf.log(1 - float(noise) / 2) / float(hparams.bottleneck_bits)
# Probabilities of flipping are p, p^2, p^3, ..., p^bottleneck_bits.
noise_mask = 1.0 - tf.exp(tf.cumsum(tf.zeros_like(x) + log_p, axis=-1))
# Having the no-noise mask, we can make noise just uniformly at random.
ordered_noise = tf.random_uniform(tf.shape(x))
# We want our noise to be 1s at the start and random {-1, 1} bits later.
ordered_noise = tf.to_float(tf.less(noise_mask, ordered_noise))
# Now we flip the bits of x on the noisy positions (ordered and normal).
x *= 2.0 * ordered_noise - 1
return x, loss
示例10: add_positional_embedding
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def add_positional_embedding(x, max_length, name, positions=None):
"""Add positional embedding.
Args:
x: a Tensor with shape [batch, length, depth]
max_length: an integer. static maximum size of any dimension.
name: a name for this layer.
positions: an optional tensor with shape [batch, length]
Returns:
a Tensor the same shape as x.
"""
_, length, depth = common_layers.shape_list(x)
var = tf.cast(tf.get_variable(name, [max_length, depth]), x.dtype)
if positions is None:
sliced = tf.cond(
tf.less(length, max_length),
lambda: tf.slice(var, [0, 0], [length, -1]),
lambda: tf.pad(var, [[0, length - max_length], [0, 0]]))
return x + tf.expand_dims(sliced, 0)
else:
return x + tf.gather(var, tf.to_int32(positions))
示例11: isemhash_bottleneck
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def isemhash_bottleneck(x, bottleneck_bits, bottleneck_noise,
discretize_warmup_steps, mode,
isemhash_noise_dev=0.5, isemhash_mix_prob=0.5):
"""Improved semantic hashing bottleneck."""
with tf.variable_scope("isemhash_bottleneck"):
x = tf.layers.dense(x, bottleneck_bits, name="dense")
y = common_layers.saturating_sigmoid(x)
if isemhash_noise_dev > 0 and mode == tf.estimator.ModeKeys.TRAIN:
noise = tf.truncated_normal(
common_layers.shape_list(x), mean=0.0, stddev=isemhash_noise_dev)
y = common_layers.saturating_sigmoid(x + noise)
d = tf.to_float(tf.less(0.5, y)) + y - tf.stop_gradient(y)
d = 2.0 * d - 1.0 # Move from [0, 1] to [-1, 1].
if mode == tf.estimator.ModeKeys.TRAIN: # Flip some bits.
noise = tf.random_uniform(common_layers.shape_list(x))
noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
d *= noise
d = common_layers.mix(d, 2.0 * y - 1.0, discretize_warmup_steps,
mode == tf.estimator.ModeKeys.TRAIN,
max_prob=isemhash_mix_prob)
return d, 0.0
示例12: mode
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def mode(cls, parameters: Dict[str, Tensor]) -> Tensor:
mu = parameters["mu"]
tau = parameters["tau"]
nu = parameters["nu"]
beta = parameters["beta"]
lam = 1./beta
mode = tf.zeros_like(mu) * tf.zeros_like(mu)
mode = tf.where(tf.logical_and(tf.greater(nu, mu),
tf.less(mu+lam/tau, nu)),
mu+lam/tau,
mode)
mode = tf.where(tf.logical_and(tf.greater(nu, mu),
tf.greater_equal(mu+lam/tau, nu)),
nu,
mode)
mode = tf.where(tf.logical_and(tf.less_equal(nu, mu),
tf.greater(mu-lam/tau, nu)),
mu-lam/tau,
mode)
mode = tf.where(tf.logical_and(tf.less_equal(nu, mu),
tf.less_equal(mu-lam/tau, nu)),
nu,
mode)
return(mode)
示例13: _adapt_mass
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def _adapt_mass(self, t, num_chain_dims):
ewmv = ExponentialWeightedMovingVariance(
self.mass_decay, self.data_shapes, num_chain_dims)
new_mass = tf.cond(self.adapt_mass,
lambda: ewmv.get_updated_precision(self.q),
lambda: ewmv.precision())
if not isinstance(new_mass, list):
new_mass = [new_mass]
# print('New mass is = {}'.format(new_mass))
# TODO incorrect shape?
# print('New mass={}'.format(new_mass))
# print('q={}, NMS={}'.format(self.q[0].get_shape(),
# new_mass[0].get_shape()))
with tf.control_dependencies(new_mass):
current_mass = tf.cond(
tf.less(tf.cast(t, tf.int32), self.mass_collect_iters),
lambda: [tf.ones(shape) for shape in self.data_shapes],
lambda: new_mass)
if not isinstance(current_mass, list):
current_mass = [current_mass]
return current_mass
示例14: _leapfrog
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def _leapfrog(self, q, p, step_size, get_gradient, mass):
def loop_cond(i, q, p):
return i < self.n_leapfrogs + 1
def loop_body(i, q, p):
step_size1 = tf.cond(i > 0,
lambda: step_size,
lambda: tf.constant(0.0, dtype=tf.float32))
step_size2 = tf.cond(tf.logical_and(tf.less(i, self.n_leapfrogs),
tf.less(0, i)),
lambda: step_size,
lambda: step_size / 2)
q, p = leapfrog_integrator(q, p, step_size1, step_size2,
lambda q: get_gradient(q), mass)
return [i + 1, q, p]
i = tf.constant(0)
_, q, p = tf.while_loop(loop_cond,
loop_body,
[i, q, p],
back_prop=False,
parallel_iterations=1)
return q, p
示例15: random_flip_left_right
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import less [as 别名]
def random_flip_left_right(image, bboxes, seed=None):
"""Random flip left-right of an image and its bounding boxes.
"""
def flip_bboxes(bboxes):
"""Flip bounding boxes coordinates.
"""
bboxes = tf.stack([1.0 - bboxes[:, 2], bboxes[:, 1],
1.0 - bboxes[:, 0], bboxes[:, 3]], axis=-1)
return bboxes
# Random flip. Tensorflow implementation.
with tf.name_scope('random_flip_left_right'):
image = tf.convert_to_tensor(image, name='image')
uniform_random = tf.random.uniform([], 0, 1.0, seed=seed)
mirror_cond = tf.less(uniform_random, .5)
# Flip image.
image = tf.cond(mirror_cond,
lambda: tf.image.flip_left_right(image),
lambda: image)
# Flip bboxes.
bboxes = tf.cond(mirror_cond,
lambda: flip_bboxes(bboxes),
lambda: bboxes)
return image, bboxes