当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.learn方法代码示例

本文整理汇总了Python中tensorflow.learn方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.learn方法的具体用法?Python tensorflow.learn怎么用?Python tensorflow.learn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.learn方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_dask_iris_classification

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def test_dask_iris_classification(self):
    if HAS_DASK and HAS_PANDAS:
      import pandas as pd  # pylint: disable=g-import-not-at-top
      import dask.dataframe as dd  # pylint: disable=g-import-not-at-top
      random.seed(42)
      iris = datasets.load_iris()
      data = pd.DataFrame(iris.data)
      data = dd.from_pandas(data, npartitions=2)
      labels = pd.DataFrame(iris.target)
      labels = dd.from_pandas(labels, npartitions=2)
      classifier = learn.LinearClassifier(
          feature_columns=learn.infer_real_valued_columns_from_input(data),
          n_classes=3)
      classifier.fit(data, labels, steps=100)
      predictions = data.map_partitions(classifier.predict).compute()
      score = accuracy_score(labels.compute(), predictions)
      self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:19,代码来源:io_test.py

示例2: test_pandas_dataframe

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def test_pandas_dataframe(self):
    if HAS_PANDAS:
      import pandas as pd  # pylint: disable=g-import-not-at-top
      random.seed(42)
      iris = datasets.load_iris()
      data = pd.DataFrame(iris.data)
      labels = pd.DataFrame(iris.target)
      classifier = learn.LinearClassifier(
          feature_columns=learn.infer_real_valued_columns_from_input(data),
          n_classes=3)
      classifier.fit(data, labels, steps=100)
      score = accuracy_score(labels[0], list(classifier.predict(data)))
      self.assertGreater(score, 0.5, "Failed with score = {0}".format(score))
    else:
      print("No pandas installed. pandas-related tests are skipped.") 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:17,代码来源:io_test.py

示例3: test_pandas_series

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def test_pandas_series(self):
    if HAS_PANDAS:
      import pandas as pd  # pylint: disable=g-import-not-at-top
      random.seed(42)
      iris = datasets.load_iris()
      data = pd.DataFrame(iris.data)
      labels = pd.Series(iris.target)
      classifier = learn.LinearClassifier(
          feature_columns=learn.infer_real_valued_columns_from_input(data),
          n_classes=3)
      classifier.fit(data, labels, steps=100)
      score = accuracy_score(labels, list(classifier.predict(data)))
      self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:15,代码来源:io_test.py

示例4: test_string_data_formats

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def test_string_data_formats(self):
    if HAS_PANDAS:
      import pandas as pd  # pylint: disable=g-import-not-at-top
      with self.assertRaises(ValueError):
        learn.io.extract_pandas_data(pd.DataFrame({"Test": ["A", "B"]}))
      with self.assertRaises(ValueError):
        learn.io.extract_pandas_labels(pd.DataFrame({"Test": ["A", "B"]})) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:io_test.py

示例5: create_dataset

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def create_dataset(def_dict, mode, use_beam_search):
  """Creates an Dataset object from a dictionary definition.

  Args:
    def_dict: A dictionary defining the input pipeline.
      It must have "dataset_name", "split_name" and "dataset_dir" that
      correspond to the class       name and constructor parameters of
      an InputPipeline, respectively.
    mode: A value in tf.contrib.learn.ModeKeys
    use_beam_search: Whether to use beam search

  Returns:
    A Dataset object.
  """
  if not "dataset_name" in def_dict:
    raise ValueError("Dataset definition must have a dataset_name property.")

  class_ = def_dict["dataset_name"]
  if not hasattr(sys.modules[__name__], class_):
    raise ValueError("Invalid Dataset class: {}".format(class_))

  # TODO(Shancheng): to support batch_size > 1,
  # remove use_beam_search argument
  if mode != tf.contrib.learn.ModeKeys.TRAIN and use_beam_search:
    def_dict['batch_size'] = 1

  dataset_class = getattr(sys.modules[__name__], class_)
  return dataset_class(params=def_dict, mode=mode) 
开发者ID:FangShancheng,项目名称:conv-ensemble-str,代码行数:30,代码来源:datasets.py

示例6: create_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def create_input_fn(self):
    """Creates an input function that can be used with tf.learn estimators.
      Note that you must pass "factory funcitons" for both the data provider and
      featurizer to ensure that everything will be created in  the same graph.
    """
    with tf.variable_scope("input_fn"):
      batch_size = self.params['batch_size']
      data_provider = self._make_data_provider()
      features_and_labels = self._read_from_data_provider(data_provider)

      tf.logging.info("Start batch queue.")
      batch = tf.train.batch(
          tensors=features_and_labels,
          enqueue_many=False,
          batch_size=batch_size,
          dynamic_pad=True,
          capacity=3000 + 16 * batch_size,
          allow_smaller_final_batch=self.params['smaller_final_batch'],
          name="batch_queue",
          num_threads=int((batch_size+1)/2)
      )

      # Separate features and labels
      features_batch = {k: batch[k] for k in self.feature_keys}
      if set(batch.keys()).intersection(self.label_keys):
        labels_batch = {k: batch[k] for k in self.label_keys}
      else:
        labels_batch = None

      return features_batch, labels_batch 
开发者ID:FangShancheng,项目名称:conv-ensemble-str,代码行数:32,代码来源:datasets.py

示例7: make_input_pipeline_from_def

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def make_input_pipeline_from_def(def_dict, mode, **kwargs):
  """Creates an InputPipeline object from a dictionary definition.

  Args:
    def_dict: A dictionary defining the input pipeline.
      It must have "class" and "params" that correspond to the class
      name and constructor parameters of an InputPipeline, respectively.
    mode: A value in tf.contrib.learn.ModeKeys

  Returns:
    A new InputPipeline object
  """
  if not "class" in def_dict:
    raise ValueError("Input Pipeline definition must have a class property.")

  class_ = def_dict["class"]
  if not hasattr(sys.modules[__name__], class_):
    raise ValueError("Invalid Input Pipeline class: {}".format(class_))

  pipeline_class = getattr(sys.modules[__name__], class_)

  # Constructor arguments
  params = {}
  if "params" in def_dict:
    params.update(def_dict["params"])
  params.update(kwargs)

  return pipeline_class(params=params, mode=mode) 
开发者ID:akanimax,项目名称:natural-language-summary-generation-from-structured-data,代码行数:30,代码来源:input_pipeline.py

示例8: create_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def create_input_fn(mode, input_files, batch_size, num_epochs):
    def input_fn():
        features = tf.contrib.layers.create_feature_spec_for_parsing(
            get_feature_columns(mode))

        feature_map = tf.contrib.learn.io.read_batch_features(
            file_pattern=input_files,
            batch_size=batch_size,
            features=features,
            reader=tf.TFRecordReader,
            randomize_input=True,
            num_epochs=num_epochs,
            queue_capacity=200000 + batch_size * 10,
            name="read_batch_features_{}".format(mode))

        # This is an ugly hack because of a current bug in tf.learn
        # During evaluation TF tries to restore the epoch variable which isn't defined during training
        # So we define the variable manually here
        if mode == tf.contrib.learn.ModeKeys.TRAIN:
            tf.get_variable(
                "read_batch_features_eval/file_name_queue/limit_epochs/epochs",
                initializer=tf.constant(0, dtype=tf.int64))

        target = feature_map.pop("target")

        return feature_map, target

    return input_fn 
开发者ID:IBM,项目名称:dstc-noesis,代码行数:30,代码来源:inputs.py

示例9: read_examples

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def read_examples(input_files, batch_size, shuffle, num_epochs=None):
  """Creates readers and queues for reading example protos."""
  files = []
  for e in input_files:
    for path in e.split(','):
      files.extend(file_io.get_matching_files(path))
  thread_count = multiprocessing.cpu_count()

  # The minimum number of instances in a queue from which examples are drawn
  # randomly. The larger this number, the more randomness at the expense of
  # higher memory requirements.
  min_after_dequeue = 1000

  # When batching data, the queue's capacity will be larger than the batch_size
  # by some factor. The recommended formula is (num_threads + a small safety
  # margin). For now, we use a single thread for reading, so this can be small.
  queue_size_multiplier = thread_count + 3

  # Convert num_epochs == 0 -> num_epochs is None, if necessary
  num_epochs = num_epochs or None

  # Build a queue of the filenames to be read.
  filename_queue = tf.train.string_input_producer(files, num_epochs, shuffle)

  example_id, encoded_example = tf.TextLineReader().read_up_to(
      filename_queue, batch_size)

  if shuffle:
    capacity = min_after_dequeue + queue_size_multiplier * batch_size
    return tf.train.shuffle_batch(
        [example_id, encoded_example],
        batch_size,
        capacity,
        min_after_dequeue,
        enqueue_many=True,
        num_threads=thread_count)

  else:
    capacity = queue_size_multiplier * batch_size
    return tf.train.batch(
        [example_id, encoded_example],
        batch_size,
        capacity=capacity,
        enqueue_many=True,
        num_threads=thread_count)


# ==============================================================================
# Building the TF learn estimators
# ============================================================================== 
开发者ID:googledatalab,项目名称:pydatalab,代码行数:52,代码来源:util.py

示例10: get_estimator

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def get_estimator(args, output_dir, features, stats, target_vocab_size):
  # Check layers used for dnn models.
  if is_dnn_model(args.model) and not args.hidden_layer_sizes:
    raise ValueError('--hidden-layer-size* must be used with DNN models')
  if is_linear_model(args.model) and args.hidden_layer_sizes:
    raise ValueError('--hidden-layer-size* cannot be used with linear models')

  # Build tf.learn features
  feature_columns = build_feature_columns(features, stats, args.model)

  # Set how often to run checkpointing in terms of steps.
  config = tf.contrib.learn.RunConfig(
      save_checkpoints_steps=args.min_eval_frequency)

  train_dir = os.path.join(output_dir, 'train')
  if args.model == 'dnn_regression':
    estimator = tf.contrib.learn.DNNRegressor(
        feature_columns=feature_columns,
        hidden_units=args.hidden_layer_sizes,
        config=config,
        model_dir=train_dir,
        optimizer=tf.train.AdamOptimizer(
            args.learning_rate, epsilon=args.epsilon))
  elif args.model == 'linear_regression':
    estimator = tf.contrib.learn.LinearRegressor(
        feature_columns=feature_columns,
        config=config,
        model_dir=train_dir,
        optimizer=tf.train.FtrlOptimizer(
            args.learning_rate,
            l1_regularization_strength=args.l1_regularization,
            l2_regularization_strength=args.l2_regularization))
  elif args.model == 'dnn_classification':
    estimator = tf.contrib.learn.DNNClassifier(
        feature_columns=feature_columns,
        hidden_units=args.hidden_layer_sizes,
        n_classes=target_vocab_size,
        config=config,
        model_dir=train_dir,
        optimizer=tf.train.AdamOptimizer(
            args.learning_rate, epsilon=args.epsilon))
  elif args.model == 'linear_classification':
    estimator = tf.contrib.learn.LinearClassifier(
        feature_columns=feature_columns,
        n_classes=target_vocab_size,
        config=config,
        model_dir=train_dir,
        optimizer=tf.train.FtrlOptimizer(
            args.learning_rate,
            l1_regularization_strength=args.l1_regularization,
            l2_regularization_strength=args.l2_regularization))
  else:
    raise ValueError('bad --model-type value')

  return estimator 
开发者ID:googledatalab,项目名称:pydatalab,代码行数:57,代码来源:task.py

示例11: create_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def create_input_fn(pipeline,
                    batch_size,
                    bucket_boundaries=None,
                    allow_smaller_final_batch=False,
                    scope=None):
  """Creates an input function that can be used with tf.learn estimators.
    Note that you must pass "factory funcitons" for both the data provider and
    featurizer to ensure that everything will be created in  the same graph.

  Args:
    pipeline: An instance of `seq2seq.data.InputPipeline`.
    batch_size: Create batches of this size. A queue to hold a
      reasonable number of batches in memory is created.
    bucket_boundaries: int list, increasing non-negative numbers.
      If None, no bucket is performed.

  Returns:
    An input function that returns `(feature_batch, labels_batch)`
    tuples when called.
  """

  def input_fn():
    """Creates features and labels.
    """

    with tf.variable_scope(scope or "input_fn"):
      data_provider = pipeline.make_data_provider()
      features_and_labels = pipeline.read_from_data_provider(data_provider)

      if bucket_boundaries:
        _, batch = tf.contrib.training.bucket_by_sequence_length(
            input_length=features_and_labels["source_len"],
            bucket_boundaries=bucket_boundaries,
            tensors=features_and_labels,
            batch_size=batch_size,
            keep_input=features_and_labels["source_len"] >= 1,
            dynamic_pad=True,
            capacity=5000 + 16 * batch_size,
            allow_smaller_final_batch=allow_smaller_final_batch,
            name="bucket_queue")
      else:
        batch = tf.train.batch(
            tensors=features_and_labels,
            enqueue_many=False,
            batch_size=batch_size,
            dynamic_pad=True,
            capacity=5000 + 16 * batch_size,
            allow_smaller_final_batch=allow_smaller_final_batch,
            name="batch_queue")

      # Separate features and labels
      features_batch = {k: batch[k] for k in pipeline.feature_keys}
      if set(batch.keys()).intersection(pipeline.label_keys):
        labels_batch = {k: batch[k] for k in pipeline.label_keys}
      else:
        labels_batch = None

      return features_batch, labels_batch

  return input_fn 
开发者ID:akanimax,项目名称:natural-language-summary-generation-from-structured-data,代码行数:62,代码来源:utils.py

示例12: create_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def create_input_fn(pipeline,
                    batch_size,
                    bucket_boundaries=None,
                    allow_smaller_final_batch=False):
  """Creates an input function that can be used with tf.learn estimators.
    Note that you must pass "factory funcitons" for both the data provider and
    featurizer to ensure that everything will be created in  the same graph.

  Args:
    pipeline: An instance of `seq2seq.data.InputPipeline`.
    batch_size: Create batches of this size. A queue to hold a
      reasonable number of batches in memory is created.
    bucket_boundaries: int list, increasing non-negative numbers.
      If None, no bucket is performed.

  Returns:
    An input function that returns `(feature_batch, labels_batch)`
    tuples when called.
  """

  def input_fn():
    """Creates features and labels.
    """

    data_provider = pipeline.make_data_provider()
    features_and_labels = pipeline.read_from_data_provider(data_provider)

    if bucket_boundaries:
      _, batch = tf.contrib.training.bucket_by_sequence_length(
          input_length=features_and_labels["source_len"],
          bucket_boundaries=bucket_boundaries,
          tensors=features_and_labels,
          batch_size=batch_size,
          keep_input=features_and_labels["source_len"] >= 1,
          dynamic_pad=True,
          capacity=5000 + 16 * batch_size,
          allow_smaller_final_batch=allow_smaller_final_batch,
          name="bucket_queue")
    else:
      batch = tf.train.batch(
          tensors=features_and_labels,
          enqueue_many=False,
          batch_size=batch_size,
          dynamic_pad=True,
          capacity=5000 + 16 * batch_size,
          allow_smaller_final_batch=allow_smaller_final_batch,
          name="batch_queue")

    # Separate features and labels
    features_batch = {k: batch[k] for k in pipeline.feature_keys}
    if set(batch.keys()).intersection(pipeline.label_keys):
      labels_batch = {k: batch[k] for k in pipeline.label_keys}
    else:
      labels_batch = None

    return features_batch, labels_batch

  return input_fn 
开发者ID:pandegroup,项目名称:reaction_prediction_seq2seq,代码行数:60,代码来源:utils.py

示例13: _build_input_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def _build_input_fn(input_file_pattern, batch_size, mode):
  """Build input function.

  Args:
    input_file_pattern: The file patter for examples
    batch_size: Batch size
    mode: The execution mode, as defined in tf.contrib.learn.ModeKeys.

  Returns:
    Tuple, dictionary of feature column name to tensor and labels.
  """
  def _input_fn():
    """Supplies the input to the model.

    Returns:
      A tuple consisting of 1) a dictionary of tensors whose keys are
      the feature names, and 2) a tensor of target labels if the mode
      is not INFER (and None, otherwise).
    """
    logging.info("Reading files from %s", input_file_pattern)
    input_files = sorted(list(tf.gfile.Glob(input_file_pattern)))
    logging.info("Reading files from %s", input_files)
    include_target_column = (mode != tf.contrib.learn.ModeKeys.INFER)
    features_spec = tf.contrib.layers.create_feature_spec_for_parsing(
        feature_columns=_get_feature_columns(include_target_column))

    if FLAGS.use_gzip:
      def gzip_reader():
        return tf.TFRecordReader(
            options=tf.python_io.TFRecordOptions(
                compression_type=TFRecordCompressionType.GZIP))
      reader_fn = gzip_reader
    else:
      reader_fn = tf.TFRecordReader

    features = tf.contrib.learn.io.read_batch_features(
        file_pattern=input_files,
        batch_size=batch_size,
        queue_capacity=3*batch_size,
        randomize_input=mode == tf.contrib.learn.ModeKeys.TRAIN,
        feature_queue_capacity=FLAGS.feature_queue_capacity,
        reader=reader_fn,
        features=features_spec)
    target = None
    if include_target_column:
      target = features.pop(FLAGS.target_field)
    return features, target

  return _input_fn 
开发者ID:googlegenomics,项目名称:cloudml-examples,代码行数:51,代码来源:variants_inference.py

示例14: _build_model_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def _build_model_fn():
  """Build model function.

  Returns:
    A model function that can be passed to `Estimator` constructor.
  """
  def _model_fn(features, labels, mode):
    """Creates the prediction and its loss.

    Args:
      features: A dictionary of tensors keyed by the feature name.
      labels: A tensor representing the labels.
      mode: The execution mode, as defined in tf.contrib.learn.ModeKeys.

    Returns:
      A tuple consisting of the prediction, loss, and train_op.
    """
    # Generate one embedding per sparse feature column and concatenate them.
    concat_embeddings = tf.contrib.layers.input_from_feature_columns(
        columns_to_tensors=features,
        feature_columns=_get_feature_columns(include_target_column=False))

    # Add one hidden layer.
    hidden_layer_0 = tf.contrib.layers.relu(
        concat_embeddings, FLAGS.hidden_units)

    # Output and logistic loss.
    logits = tf.contrib.layers.linear(hidden_layer_0, FLAGS.num_classes)

    predictions = tf.contrib.layers.softmax(logits)
    if mode == tf.contrib.learn.ModeKeys.INFER:
      predictions = {
          tf.contrib.learn.PredictionKey.PROBABILITIES: predictions,
          PREDICTION_KEY: features[PREDICTION_KEY]
      }
      output_alternatives = {
          DEFAULT_OUTPUT_ALTERNATIVE: (tf.contrib.learn.ProblemType.UNSPECIFIED,
                                       predictions)
      }
      return model_fn.ModelFnOps(
          mode=mode,
          predictions=predictions,
          output_alternatives=output_alternatives)

    target_one_hot = tf.one_hot(labels, FLAGS.num_classes)
    target_one_hot = tf.reduce_sum(
        input_tensor=target_one_hot, reduction_indices=[1])
    loss = tf.losses.softmax_cross_entropy(target_one_hot, logits)
    if mode == tf.contrib.learn.ModeKeys.EVAL:
      return predictions, loss, None

    opt = tf.train.MomentumOptimizer(FLAGS.learning_rate, FLAGS.momentum)
    train_op = tf.contrib.layers.optimize_loss(
        loss=loss,
        global_step=tf.contrib.framework.get_global_step(),
        learning_rate=FLAGS.learning_rate,
        optimizer=opt)
    return model_fn.ModelFnOps(
        mode=mode, predictions=predictions, loss=loss, train_op=train_op)

  return _model_fn 
开发者ID:googlegenomics,项目名称:cloudml-examples,代码行数:63,代码来源:variants_inference.py

示例15: _def_experiment

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import learn [as 别名]
def _def_experiment(
    train_file_pattern, eval_file_pattern, batch_size):
  """Creates the function used to configure the experiment runner.

  This function creates a function that is used by the learn_runner
  module to create an Experiment.

  Args:
    train_file_pattern: The directory the train data can be found in.
    eval_file_pattern: The directory the test data can be found in.
    batch_size: Batch size

  Returns:
    A function that creates an Experiment object for the runner.
  """

  def _experiment_fn(output_dir):
    """Experiment function used by learn_runner to run training/eval/etc.

    Args:
      output_dir: String path of directory to use for outputs.

    Returns:
      tf.learn `Experiment`.
    """
    estimator = tf.contrib.learn.Estimator(
        model_fn=_build_model_fn(),
        model_dir=output_dir)
    train_input_fn = _build_input_fn(
        input_file_pattern=train_file_pattern,
        batch_size=batch_size,
        mode=tf.contrib.learn.ModeKeys.TRAIN)
    eval_input_fn = _build_input_fn(
        input_file_pattern=eval_file_pattern,
        batch_size=batch_size,
        mode=tf.contrib.learn.ModeKeys.EVAL)

    return tf.contrib.learn.Experiment(
        estimator=estimator,
        train_input_fn=train_input_fn,
        train_steps=FLAGS.num_train_steps,
        eval_input_fn=eval_input_fn,
        eval_steps=FLAGS.num_eval_steps,
        eval_metrics=_create_evaluation_metrics(),
        min_eval_frequency=100,
        export_strategies=[
            saved_model_export_utils.make_export_strategy(
                _predict_input_fn,
                exports_to_keep=5,
                default_output_alternative_key=DEFAULT_OUTPUT_ALTERNATIVE)
        ])

  return _experiment_fn 
开发者ID:googlegenomics,项目名称:cloudml-examples,代码行数:55,代码来源:variants_inference.py


注:本文中的tensorflow.learn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。