本文整理汇总了Python中tensorflow.layers方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.layers方法的具体用法?Python tensorflow.layers怎么用?Python tensorflow.layers使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.layers方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def __init__(self, data_format):
"""Creates a model for classifying a hand-written digit.
Args:
data_format: Either 'channels_first' or 'channels_last'.
'channels_first' is typically faster on GPUs while 'channels_last' is
typically faster on CPUs. See
https://www.tensorflow.org/performance/performance_guide#data_formats
"""
super(MNISTModel, self).__init__(name='')
if data_format == 'channels_first':
self._input_shape = [-1, 1, 28, 28]
else:
assert data_format == 'channels_last'
self._input_shape = [-1, 28, 28, 1]
self.conv1 = self.track_layer(
tf.layers.Conv2D(32, 5, data_format=data_format, activation=tf.nn.relu))
self.conv2 = self.track_layer(
tf.layers.Conv2D(64, 5, data_format=data_format, activation=tf.nn.relu))
self.fc1 = self.track_layer(tf.layers.Dense(1024, activation=tf.nn.relu))
self.fc2 = self.track_layer(tf.layers.Dense(10))
self.dropout = self.track_layer(tf.layers.Dropout(0.5))
self.max_pool2d = self.track_layer(
tf.layers.MaxPooling2D(
(2, 2), (2, 2), padding='SAME', data_format=data_format))
示例2: _conv2d_impl
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def _conv2d_impl(self, input_layer, num_channels_in, filters, kernel_size,
strides, padding, kernel_initializer):
if self.use_tf_layers:
return conv_layers.conv2d(input_layer, filters, kernel_size, strides,
padding, self.channel_pos,
kernel_initializer=kernel_initializer,
use_bias=False)
else:
weights_shape = [kernel_size[0], kernel_size[1], num_channels_in, filters]
# We use the name 'conv2d/kernel' so the variable has the same name as its
# tf.layers equivalent. This way, if a checkpoint is written when
# self.use_tf_layers == True, it can be loaded when
# self.use_tf_layers == False, and vice versa.
weights = self.get_variable('conv2d/kernel', weights_shape,
self.variable_dtype, self.dtype,
initializer=kernel_initializer)
if self.data_format == 'NHWC':
strides = [1] + strides + [1]
else:
strides = [1, 1] + strides
return tf.nn.conv2d(input_layer, weights, strides, padding,
data_format=self.data_format)
示例3: _compute_concat_output_shape
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def _compute_concat_output_shape(input_shape, axis):
"""Infers the output shape of concat given the input shape.
The code is adapted from the ConcatLayer of lasagne
(https://github.com/Lasagne/Lasagne/blob/master/lasagne/layers/merge.py)
Args:
input_shape (list): A list of shapes, each of which is in turn a
list or TensorShape.
axis (int): Axis of the concat operation.
Returns:
list: Output shape of concat.
"""
# The size of each axis of the output shape equals the first
# input size of respective axis that is not `None`
input_shape = [tf.TensorShape(s).as_list() for s in input_shape]
output_shape = [next((s for s in sizes if s is not None), None)
for sizes in zip(*input_shape)]
axis_sizes = [s[axis] for s in input_shape]
concat_axis_size = None if any(s is None for s in axis_sizes) \
else sum(axis_sizes)
output_shape[axis] = concat_axis_size
return output_shape
示例4: get_pooling_layer_hparams
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def get_pooling_layer_hparams(hparams):
"""Creates pooling layer hparams `dict` usable for :func:`get_layer`.
If the :attr:`hparams` sets `'pool_size'` to `None`, the layer will be
changed to the respective reduce-pooling layer. For example,
:class:`tf.layers.MaxPooling1D <layers/MaxPooling1D>` is replaced with
:class:`~texar.core.MaxReducePooling1D`.
"""
if isinstance(hparams, HParams):
hparams = hparams.todict()
new_hparams = copy.copy(hparams)
kwargs = new_hparams.get('kwargs', None)
if kwargs and kwargs.get('pool_size', None) is None:
pool_type = hparams['type']
new_hparams['type'] = _POOLING_TO_REDUCE.get(pool_type, pool_type)
kwargs.pop('pool_size', None)
kwargs.pop('strides', None)
kwargs.pop('padding', None)
return new_hparams
示例5: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def __init__(self,
layers,
trainable=True,
name=None,
**kwargs):
super(SequentialLayer, self).__init__(
trainable=trainable, name=name, **kwargs)
if len(layers) == 0:
raise ValueError("'layers' must be a non-empty list.")
self._layers = []
for layer in layers:
if isinstance(layer, tf.layers.Layer):
self._layers.append(layer)
else:
self._layers.append(get_layer(hparams=layer))
# Keep tracks of whether trainable variables have been created
self._vars_built = False
示例6: call
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def call(self, inputs, mode=None): # pylint: disable=arguments-differ
training = is_train_mode(mode)
outputs = inputs
for layer in self._layers:
if isinstance(layer, tf.layers.Dropout) or \
isinstance(layer, tf.layers.BatchNormalization):
outputs = layer(outputs, training=training)
else:
outputs = layer(inputs)
inputs = outputs
if not self.built or not self._vars_built:
self._collect_weights()
self._vars_built = True
return outputs
示例7: layer_normalize
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def layer_normalize(inputs,
scope=None,
**kwargs):
"""Applies layer normalization. Normalizes over the last dimension.
Args:
inputs: A tensor with 2 or more dimensions, where the first
dimension must be `batch_size`.
scope (optional): variable scope.
Returns:
A tensor with the same shape and data dtype as `inputs`.
"""
return tf.contrib.layers.layer_norm(
inputs=inputs, begin_norm_axis=-1, begin_params_axis=-1, scope=scope,
**kwargs
)
示例8: stacked_lstm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def stacked_lstm(self, inputs, states, hidden_size, output_size, nlayers):
"""Stacked LSTM layers with FC layers as input and output embeddings.
Args:
inputs: input tensor
states: a list of internal lstm states for each layer
hidden_size: number of lstm units
output_size: size of the output
nlayers: number of lstm layers
Returns:
net: output of the network
skips: a list of updated lstm states for each layer
"""
net = inputs
net = tfl.dense(
net, hidden_size, activation=None, name="af1")
for i in range(nlayers):
net, states[i] = common_video.basic_lstm(
net, states[i], hidden_size, name="alstm%d"%i)
net = tfl.dense(
net, output_size, activation=tf.nn.tanh, name="af2")
return net, states
示例9: lstm_gaussian
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def lstm_gaussian(self, inputs, states, hidden_size, output_size, nlayers,
name):
"""Stacked LSTM layers with FC layer as input and gaussian as output.
Args:
inputs: input tensor
states: a list of internal lstm states for each layer
hidden_size: number of lstm units
output_size: size of the output
nlayers: number of lstm layers
name: the lstm name for scope definition
Returns:
mu: mean of the predicted gaussian
logvar: log(var) of the predicted gaussian
skips: a list of updated lstm states for each layer
"""
net = inputs
net = tfl.dense(net, hidden_size, activation=None, name="%sf1"%name)
for i in range(nlayers):
net, states[i] = common_video.basic_lstm(
net, states[i], hidden_size, name="%slstm%d"%(name, i))
mu = tfl.dense(net, output_size, activation=None, name="%sf2mu"%name)
logvar = tfl.dense(net, output_size, activation=None, name="%sf2log"%name)
return mu, logvar, states
示例10: update_internal_states_early
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def update_internal_states_early(self, internal_states, frames):
"""Update the internal states early in the network in GRU-like way."""
batch_size = common_layers.shape_list(frames[0])[0]
internal_state = internal_states[0][0][:batch_size, :, :, :]
state_activation = tf.concat([internal_state, frames[0]], axis=-1)
state_gate_candidate = tf.layers.conv2d(
state_activation, 2 * self.hparams.recurrent_state_size,
(3, 3), padding="SAME", name="state_conv")
state_gate, state_candidate = tf.split(state_gate_candidate, 2, axis=-1)
state_gate = tf.nn.sigmoid(state_gate)
state_candidate = tf.tanh(state_candidate)
internal_state = internal_state * state_gate
internal_state += state_candidate * (1.0 - state_gate)
max_batch_size = max(_MAX_BATCH, self.hparams.batch_size)
diff_batch_size = max_batch_size - batch_size
internal_state = tf.pad(
internal_state, [[0, diff_batch_size], [0, 0], [0, 0], [0, 0]])
return [[internal_state]]
示例11: reward_prediction_mid
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def reward_prediction_mid(
self, input_images, input_reward, action, latent, mid_outputs):
"""Builds a reward prediction network from intermediate layers."""
encoded = []
for i, output in enumerate(mid_outputs):
enc = output
enc = tfl.conv2d(enc, 64, [3, 3], strides=(1, 1), activation=tf.nn.relu)
enc = tfl.conv2d(enc, 32, [3, 3], strides=(2, 2), activation=tf.nn.relu)
enc = tfl.conv2d(enc, 16, [3, 3], strides=(2, 2), activation=tf.nn.relu)
enc = tfl.flatten(enc)
enc = tfl.dense(enc, 64, activation=tf.nn.relu, name="rew_enc_%d" % i)
encoded.append(enc)
x = encoded
x = tf.stack(x, axis=1)
x = tfl.flatten(x)
x = tfl.dense(x, 256, activation=tf.nn.relu, name="rew_dense1")
x = tfl.dense(x, 128, activation=tf.nn.relu, name="rew_dense2")
return x
示例12: gated_linear_unit_layer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def gated_linear_unit_layer(x, name=None):
"""Gated linear unit layer.
Paper: Language Modeling with Gated Convolutional Networks.
Link: https://arxiv.org/abs/1612.08083
x = Wx * sigmoid(W'x).
Args:
x: A tensor
name: A string
Returns:
A tensor of the same shape as x.
"""
with tf.variable_scope(name, default_name="glu_layer", values=[x]):
depth = shape_list(x)[-1]
x = layers().Dense(depth * 2, activation=None)(x)
x, gating_x = tf.split(x, 2, axis=-1)
return x * tf.nn.sigmoid(gating_x)
示例13: double_discriminator
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def double_discriminator(x, filters1=128, filters2=None,
kernel_size=8, strides=4, pure_mean=False):
"""A convolutional discriminator with 2 layers and concatenated output."""
if filters2 is None:
filters2 = 4 * filters1
with tf.variable_scope("discriminator"):
batch_size = shape_list(x)[0]
net = layers().Conv2D(
filters1, kernel_size, strides=strides, padding="SAME", name="conv1")(x)
if pure_mean:
net1 = tf.reduce_mean(net, [1, 2])
else:
net1 = mean_with_attention(net, "mean_with_attention1")
tf.reshape(net, [batch_size, -1])
net = tf.nn.relu(net)
net = layers().Conv2D(
filters2, kernel_size, strides=strides, padding="SAME", name="conv2")(x)
if pure_mean:
net2 = tf.reduce_mean(net, [1, 2])
else:
net2 = mean_with_attention(net, "mean_with_attention2")
return tf.concat([net1, net2], axis=-1)
示例14: max_pool_layer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def max_pool_layer(layer_id, inputs, kernel_size, stride):
"""Build a max-pooling layer.
Args:
layer_id: int. Integer ID for this layer's variables.
inputs: Tensor of shape [num_examples, width, height, in_channels]. Each row
corresponds to a single example.
kernel_size: int. Width and height to pool over per input channel. The
kernel is assumed to be square.
stride: int. Step size between pooling operations.
Returns:
Tensor of shape [num_examples, width/stride, height/stride, out_channels].
Result of applying max pooling to 'inputs'.
"""
# TODO(b/67004004): Delete this function and rely on tf.layers exclusively.
with tf.variable_scope("pool_%d" % layer_id):
return tf.nn.max_pool(
inputs, [1, kernel_size, kernel_size, 1], [1, stride, stride, 1],
padding="SAME",
name="pool")
示例15: lstm_gaussian
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import layers [as 别名]
def lstm_gaussian(self, inputs, states, hidden_size, output_size, nlayers):
"""Stacked LSTM layers with FC layer as input and gaussian as output.
Args:
inputs: input tensor
states: a list of internal lstm states for each layer
hidden_size: number of lstm units
output_size: size of the output
nlayers: number of lstm layers
Returns:
mu: mean of the predicted gaussian
logvar: log(var) of the predicted gaussian
skips: a list of updated lstm states for each layer
"""
net = inputs
net = tfl.dense(net, hidden_size, activation=None, name="bf1")
for i in range(nlayers):
net, states[i] = common_video.basic_lstm(
net, states[i], hidden_size, name="blstm%d"%i)
mu = tfl.dense(net, output_size, activation=None, name="bf2mu")
logvar = tfl.dense(net, output_size, activation=None, name="bf2log")
return mu, logvar, states