当前位置: 首页>>代码示例>>Python>>正文


Python regularizers.l2方法代码示例

本文整理汇总了Python中tensorflow.keras.regularizers.l2方法的典型用法代码示例。如果您正苦于以下问题:Python regularizers.l2方法的具体用法?Python regularizers.l2怎么用?Python regularizers.l2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.regularizers的用法示例。


在下文中一共展示了regularizers.l2方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def __init__(self, out_features,**kwargs):
        super(_DenseLayer, self).__init__(**kwargs)
        k_reg = None if w_decay is None else l2(w_decay)
        self.layers = []
        self.layers.append(tf.keras.Sequential(
            [
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                kernel_regularizer=k_reg),
                layers.BatchNormalization(),
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                    kernel_regularizer=k_reg),
                layers.BatchNormalization(),
            ])) # first relu can be not needed 
开发者ID:xavysp,项目名称:DexiNed,代码行数:21,代码来源:model.py

示例2: __initial_conv_block_inception

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def __initial_conv_block_inception(input_tensor, weight_decay=5e-4):
    """ Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input_tensor: input Keras tensor
        weight_decay: weight decay factor
    Returns: a Keras tensor
    """
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input_tensor)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
开发者ID:titu1994,项目名称:keras-squeeze-excite-network,代码行数:19,代码来源:se_resnext.py

示例3: create_model

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def create_model(trainable=False):
    model = MobileNetV2(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, alpha=ALPHA, weights="imagenet")

    for layer in model.layers:
        layer.trainable = trainable

    block = model.get_layer("block_16_project_BN").output

    x = Conv2D(112, padding="same", kernel_size=3, strides=1, activation="relu")(block)
    x = Conv2D(112, padding="same", kernel_size=3, strides=1, use_bias=False)(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)

    x = Conv2D(5, padding="same", kernel_size=1, activation="sigmoid")(x)

    model = Model(inputs=model.input, outputs=x)

    # divide by 2 since d/dweight learning_rate * weight^2 = 2 * learning_rate * weight
    # see https://arxiv.org/pdf/1711.05101.pdf
    regularizer = l2(WEIGHT_DECAY / 2)
    for weight in model.trainable_weights:
        with tf.keras.backend.name_scope("weight_regularizer"):
            model.add_loss(regularizer(weight)) # in tf2.0: lambda: regularizer(weight)

    return model 
开发者ID:lars76,项目名称:object-localization,代码行数:27,代码来源:train.py

示例4: triplet_network

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def triplet_network(base_network, embedding_dims=2, embedding_l2=0.0):
    def output_shape(shapes):
        shape1, shape2, shape3 = shapes
        return (3, shape1[0],)

    input_a = Input(shape=base_network.input_shape[1:])
    input_p = Input(shape=base_network.input_shape[1:])
    input_n = Input(shape=base_network.input_shape[1:])

    embeddings = Dense(embedding_dims,
                       kernel_regularizer=l2(embedding_l2))(base_network.output)
    network = Model(base_network.input, embeddings)

    processed_a = network(input_a)
    processed_p = network(input_p)
    processed_n = network(input_n)

    triplet = Lambda(K.stack,
                     output_shape=output_shape,
                     name='stacked_triplets')([processed_a,
                                               processed_p,
                                               processed_n],)
    model = Model([input_a, input_p, input_n], triplet)

    return model, processed_a, processed_p, processed_n 
开发者ID:beringresearch,项目名称:ivis,代码行数:27,代码来源:network.py

示例5: create_seq_modeling

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def create_seq_modeling(in_,
                            input_dims,
                            data_per_period,
                            n_periods,
                            n_classes,
                            transition_window,
                            name_prefix=""):
        cls = AveragePooling2D((data_per_period, 1),
                               name="{}average_pool".format(name_prefix))(in_)
        out = Conv2D(filters=n_classes,
                     kernel_size=(transition_window, 1),
                     activation="softmax",
                     kernel_regularizer=regularizers.l2(1e-5),
                     padding="same",
                     name="{}sequence_conv_out".format(name_prefix))(cls)
        s = [-1, n_periods, input_dims//data_per_period, n_classes]
        if s[2] == 1:
            s.pop(2)  # Squeeze the dim
        out = Lambda(lambda x: tf.reshape(x, s),
                     name="{}sequence_classification_reshaped".format(name_prefix))(out)
        return out 
开发者ID:perslev,项目名称:U-Time,代码行数:23,代码来源:utime.py

示例6: log

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def log(self):
        self.logger("{} Model Summary\n"
                    "-------------------".format(__class__.__name__))
        self.logger("N periods:         {}".format(self.n_periods))
        self.logger("Input dims:        {}".format(self.input_dims))
        self.logger("N channels:        {}".format(self.n_channels))
        self.logger("N classes:         {}".format(self.n_classes))
        self.logger("Kernel size:       {}".format(self.kernel_size))
        self.logger("Dilation rate:     {}".format(self.dilation))
        self.logger("CF factor:         %.3f" % self.cf)
        self.logger("Init filters:      {}".format(self.init_filters))
        self.logger("Depth:             %i" % self.depth)
        self.logger("Poolings:          {}".format(self.pools))
        self.logger("Transition window  {}".format(self.transition_window))
        self.logger("Dense activation   {}".format(self.dense_classifier_activation))
        self.logger("l2 reg:            %s" % self.l2_reg)
        self.logger("Padding:           %s" % self.padding)
        self.logger("Conv activation:   %s" % self.activation)
        self.logger("Receptive field:   %s" % self.receptive_field[0])
        self.logger("Seq length.:       {}".format(self.n_periods*self.input_dims))
        self.logger("N params:          %i" % self.count_params())
        self.logger("Input:             %s" % self.input)
        self.logger("Output:            %s" % self.output) 
开发者ID:perslev,项目名称:U-Time,代码行数:25,代码来源:utime.py

示例7: buildModel

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def buildModel(patchShape, numClasses):
    input = Input(shape=patchShape)
    n_base_fileter = 32
    _handle_data_format()
    conv = Conv3D(filters=n_base_fileter, kernel_size=(7, 7, 7),
                  strides=(2, 2, 2), kernel_initializer="he_normal",
                  )(input)
    norm = BatchNormalization(axis=CHANNEL_AXIS)(conv)
    conv1 = Activation("relu")(norm)
    pool1 = MaxPooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2),
                         padding="same")(conv1)
    flatten1 = Flatten()(pool1)
    dense = Dense(units=numClasses,
                  kernel_initializer="he_normal",
                  activation="softmax",
                  kernel_regularizer=l2(1e-4))(flatten1)
    model = Model(inputs=input, outputs=dense)
    return model 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:20,代码来源:multiclass_3D_CNN.py

示例8: log

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def log(self):
        self.logger("Multi-Task UNet Model Summary\n"
                    "-----------------------------")
        self.logger("N classes:         %s" % list(self.n_classes))
        self.logger("CF factor:         %.3f" % self.cf**2)
        self.logger("Depth:             %i" % self.depth)
        self.logger("l2 reg:            %s" % self.l2_reg)
        self.logger("Padding:           %s" % self.padding)
        self.logger("Conv activation:   %s" % self.activation)
        self.logger("Out activation:    %s" % list(self.out_activation))
        self.logger("Receptive field:   %s" % self.receptive_field)
        self.logger("N params:          %i" % self.count_params())
        self.logger("N tasks:           %i" % self.n_tasks)
        if self.n_tasks > 1:
            inputs = self.input
            outputs = self.output
        else:
            inputs = [self.input]
            outputs = [self.output]
        for i, (id_, in_, out) in enumerate(zip(self.task_IDs, inputs, outputs)):
            self.logger("\n--- Task %s ---" % id_)
            self.logger("In shape:  %s" % in_.shape)
            self.logger("Out shape: %s\n" % out.shape) 
开发者ID:perslev,项目名称:MultiPlanarUNet,代码行数:25,代码来源:multitask_unet2d.py

示例9: log

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def log(self):
        self.logger("UNet Model Summary\n------------------")
        self.logger("Image rows:        %i" % self.img_shape[0])
        self.logger("Image cols:        %i" % self.img_shape[1])
        self.logger("Image channels:    %i" % self.img_shape[2])
        self.logger("N classes:         %i" % self.n_classes)
        self.logger("CF factor:         %.3f" % self.cf**2)
        self.logger("Depth:             %i" % self.depth)
        self.logger("l2 reg:            %s" % self.l2_reg)
        self.logger("Padding:           %s" % self.padding)
        self.logger("Conv activation:   %s" % self.activation)
        self.logger("Out activation:    %s" % self.out_activation)
        self.logger("Receptive field:   %s" % self.receptive_field)
        self.logger("N params:          %i" % self.count_params())
        self.logger("Output:            %s" % self.output)
        self.logger("Crop:              %s" % (self.label_crop if np.sum(self.label_crop) != 0 else "None")) 
开发者ID:perslev,项目名称:MultiPlanarUNet,代码行数:18,代码来源:unet.py

示例10: _initialize

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def _initialize(self):
        if isinstance(self.char_window_size, int):
            self.char_window_size = [self.char_window_size]
        if self.char_filters is None or isinstance(self.char_filters, int):
            self.char_filters = [self.char_filters] * len(self.char_window_size)
        if len(self.char_window_size) != len(self.char_filters):
            raise ValueError("There should be the same number of window sizes and filter sizes")
        if isinstance(self.word_lstm_units, int):
            self.word_lstm_units = [self.word_lstm_units] * self.word_lstm_layers
        if len(self.word_lstm_units) != self.word_lstm_layers:
            raise ValueError("There should be the same number of lstm layer units and lstm layers")
        if self.word_vectorizers is None:
            self.word_vectorizers = []
        if self.regularizer is not None:
            self.regularizer = l2(self.regularizer)
        if self.verbose > 0:
            log.info("{} symbols, {} tags in CharacterTagger".format(len(self.symbols), len(self.tags))) 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:19,代码来源:morpho_tagger.py

示例11: _cnn_

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def _cnn_(cnn_input_shape,name=None):
    with tf.variable_scope(name or 'convnet', reuse=tf.AUTO_REUSE):
        convnet = Sequential()
        convnet.add(Conv1D(230, 3,
            input_shape = cnn_input_shape,
            kernel_initializer = W_init,
            bias_initializer = b_init_conv,
            kernel_regularizer=l2(2e-4)
            ))
        convnet.add(MaxPooling1D(pool_size=cnn_input_shape[0]-4))
        convnet.add(Activation('relu'))

        convnet.add(Flatten())
        convnet.add(Dense(cnn_input_shape[-1]*230, activation = 'sigmoid',
            kernel_initializer = W_init,
            bias_initializer = b_init_dense,
            kernel_regularizer=l2(1e-3)
            ))
    return convnet 
开发者ID:thunlp,项目名称:RSN,代码行数:21,代码来源:cnnmodule.py

示例12: transition_layer

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def transition_layer(x, nb_channels, dropout_rate=None, compression=1.0, weight_decay=1e-4):
    """
    Creates a transition layer between dense blocks as transition, which do convolution and pooling.
    Works as downsampling.
    """
    
    x = BatchNormalization(gamma_regularizer=l2(weight_decay), beta_regularizer=l2(weight_decay))(x)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_channels*compression), (1, 1), padding='same',
                      use_bias=False, kernel_regularizer=l2(weight_decay))(x)
    
    # Adding dropout
    if dropout_rate:
        x = Dropout(dropout_rate)(x)
    
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)
    return x 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:19,代码来源:DenseNet.py

示例13: depthwiseConv_bn

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def depthwiseConv_bn(x, depth_multiplier, kernel_size,  strides=1):
	""" Depthwise convolution 
	The DepthwiseConv2D is just the first step of the Depthwise Separable convolution (without the pointwise step).
	Depthwise Separable convolutions consists in performing just the first step in a depthwise spatial convolution 
	(which acts on each input channel separately).
	
	This function defines a 2D Depthwise separable convolution operation with BN and relu6.
	# Arguments
		x: Tensor, input tensor of conv layer.
		filters: Integer, the dimensionality of the output space.
		kernel_size: An integer or tuple/list of 2 integers, specifying the
			width and height of the 2D convolution window.
		strides: An integer or tuple/list of 2 integers,
			specifying the strides of the convolution along the width and height.
			Can be a single integer to specify the same value for
			all spatial dimensions.
	# Returns
		Output tensor.
	"""

	x = layers.DepthwiseConv2D(kernel_size=kernel_size, strides=strides, depth_multiplier=depth_multiplier,
									padding='same', use_bias=False, kernel_regularizer=regularizers.l2(l=0.0003))(x)  
	x = layers.BatchNormalization(epsilon=1e-3, momentum=0.999)(x)  
	x = layers.ReLU(max_value=6)(x)
	return x 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:27,代码来源:MNasNet.py

示例14: build

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def build(self, input_shape, num_output, repetitions=3):
        input_x = Input(shape=input_shape)

        feature_maps = self.extract_multi_resolution_feature(repetitions=repetitions)(input_x)
        x = self.make_classification_head(feature_maps, self.filter_list)

        x = Conv2D(filters=x.get_shape().as_list()[-1] * 2, kernel_size=(1, 1), strides=(1, 1), padding='same', kernel_regularizer=l2(1e-4))(x)
        x = BatchNormalization(axis=-1)(x, training=self.training)
        x = Activation("relu")(x)
        x = GlobalAveragePooling2D()(x)
        x = Flatten()(x)

        x = Dense(units=num_output,
                  name='final_fully_connected',
                  kernel_initializer="he_normal",
                  kernel_regularizer=l2(1e-4),
                  activation='softmax')(x)

        return Model(inputs=input_x, outputs=x) 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:21,代码来源:SE_HRNet.py

示例15: conv2d_unit

# 需要导入模块: from tensorflow.keras import regularizers [as 别名]
# 或者: from tensorflow.keras.regularizers import l2 [as 别名]
def conv2d_unit(x, filters, kernels, strides=1):
    """Convolution Unit
    This function defines a 2D convolution operation with BN and LeakyReLU.
    # Arguments
        x: Tensor, input tensor of conv layer.
        filters: Integer, the dimensionality of the output space.
        kernels: An integer or tuple/list of 2 integers, specifying the
            width and height of the 2D convolution window.
        strides: An integer or tuple/list of 2 integers,
            specifying the strides of the convolution along the width and
            height. Can be a single integer to specify the same value for
            all spatial dimensions.
    # Returns
            Output tensor.
    """
    x = Conv2D(filters, kernels,
               padding='same',
               strides=strides,
               activation='linear',
               kernel_regularizer=l2(5e-4))(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(alpha=0.1)(x)

    return x 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:26,代码来源:Darknet53.py


注:本文中的tensorflow.keras.regularizers.l2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。