当前位置: 首页>>代码示例>>Python>>正文


Python optimizers.RMSprop方法代码示例

本文整理汇总了Python中tensorflow.keras.optimizers.RMSprop方法的典型用法代码示例。如果您正苦于以下问题:Python optimizers.RMSprop方法的具体用法?Python optimizers.RMSprop怎么用?Python optimizers.RMSprop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.optimizers的用法示例。


在下文中一共展示了optimizers.RMSprop方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setup

# 需要导入模块: from tensorflow.keras import optimizers [as 别名]
# 或者: from tensorflow.keras.optimizers import RMSprop [as 别名]
def setup(self, config):
        with FileLock(os.path.expanduser("~/.tune.lock")):
            self.train_stories, self.test_stories = read_data()
        model = self.build_model()
        rmsprop = RMSprop(
            lr=self.config.get("lr", 1e-3), rho=self.config.get("rho", 0.9))
        model.compile(
            optimizer=rmsprop,
            loss="sparse_categorical_crossentropy",
            metrics=["accuracy"])
        self.model = model 
开发者ID:ray-project,项目名称:ray,代码行数:13,代码来源:pbt_memnn_example.py

示例2: _get_optimizer

# 需要导入模块: from tensorflow.keras import optimizers [as 别名]
# 或者: from tensorflow.keras.optimizers import RMSprop [as 别名]
def _get_optimizer(optimizer, lr_mult=1.0):
    "Get optimizer with correct learning rate."
    if optimizer == "sgd":
        return optimizers.SGD(lr=0.01*lr_mult)
    elif optimizer == "rmsprop":
        return optimizers.RMSprop(lr=0.001*lr_mult)
    elif optimizer == "adagrad":
        return optimizers.Adagrad(lr=0.01*lr_mult)
    elif optimizer == "adam":
        return optimizers.Adam(lr=0.001*lr_mult)
    elif optimizer == "nadam":
        return optimizers.Nadam(lr=0.002*lr_mult)
    raise NotImplementedError 
开发者ID:asreview,项目名称:asreview,代码行数:15,代码来源:lstm_base.py

示例3: get_optimizer

# 需要导入模块: from tensorflow.keras import optimizers [as 别名]
# 或者: from tensorflow.keras.optimizers import RMSprop [as 别名]
def get_optimizer(optim_type, learning_rate, decay_type='cosine', decay_steps=100000):
    optim_type = optim_type.lower()

    lr_scheduler = get_lr_scheduler(learning_rate, decay_type, decay_steps)

    if optim_type == 'adam':
        optimizer = Adam(learning_rate=lr_scheduler, amsgrad=False)
    elif optim_type == 'rmsprop':
        optimizer = RMSprop(learning_rate=lr_scheduler, rho=0.9, momentum=0.0, centered=False)
    elif optim_type == 'sgd':
        optimizer = SGD(learning_rate=lr_scheduler, momentum=0.0, nesterov=False)
    else:
        raise ValueError('Unsupported optimizer type')

    return optimizer 
开发者ID:david8862,项目名称:keras-YOLOv3-model-set,代码行数:17,代码来源:model_utils.py

示例4: get_optimizer

# 需要导入模块: from tensorflow.keras import optimizers [as 别名]
# 或者: from tensorflow.keras.optimizers import RMSprop [as 别名]
def get_optimizer(optim_type, learning_rate):
    if optim_type == 'sgd':
        optimizer = SGD(lr=learning_rate, decay=5e-4, momentum=0.9)
    elif optim_type == 'rmsprop':
        optimizer = RMSprop(lr=learning_rate)
    elif optim_type == 'adam':
        optimizer = Adam(lr=learning_rate, decay=5e-4)
    else:
        raise ValueError('Unsupported optimizer type')
    return optimizer 
开发者ID:david8862,项目名称:keras-YOLOv3-model-set,代码行数:12,代码来源:train_imagenet.py

示例5: build_and_train_models

# 需要导入模块: from tensorflow.keras import optimizers [as 别名]
# 或者: from tensorflow.keras.optimizers import RMSprop [as 别名]
def build_and_train_models():
    # load MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    model_name = "dcgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    discriminator = build_discriminator(inputs)
    # [1] or original paper uses Adam, 
    # but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    discriminator.compile(loss='binary_crossentropy',
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = build_generator(inputs, image_size)
    generator.summary()

    # build adversarial model
    optimizer = RMSprop(lr=lr * 0.5, decay=decay * 0.5)
    # freeze the weights of discriminator during adversarial training
    discriminator.trainable = False
    # adversarial = generator + discriminator
    adversarial = Model(inputs, 
                        discriminator(generator(inputs)),
                        name=model_name)
    adversarial.compile(loss='binary_crossentropy',
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    params = (batch_size, latent_size, train_steps, model_name)
    train(models, x_train, params) 
开发者ID:PacktPublishing,项目名称:Advanced-Deep-Learning-with-Keras,代码行数:55,代码来源:dcgan-mnist-4.2.1.py

示例6: build_and_train_models

# 需要导入模块: from tensorflow.keras import optimizers [as 别名]
# 或者: from tensorflow.keras.optimizers import RMSprop [as 别名]
def build_and_train_models():
    # load MNIST dataset
    (x_train, y_train), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    num_labels = np.amax(y_train) + 1
    y_train = to_categorical(y_train)

    model_name = "cgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    batch_size = 64
    train_steps = 40000
    lr = 2e-4
    decay = 6e-8
    input_shape = (image_size, image_size, 1)
    label_shape = (num_labels, )

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    labels = Input(shape=label_shape, name='class_labels')

    discriminator = build_discriminator(inputs, labels, image_size)
    # [1] or original paper uses Adam, 
    # but discriminator converges easily with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    discriminator.compile(loss='binary_crossentropy',
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = build_generator(inputs, labels, image_size)
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    # freeze the weights of discriminator during adversarial training
    discriminator.trainable = False
    outputs = discriminator([generator([inputs, labels]), labels])
    adversarial = Model([inputs, labels],
                        outputs,
                        name=model_name)
    adversarial.compile(loss='binary_crossentropy',
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    data = (x_train, y_train)
    params = (batch_size, latent_size, train_steps, num_labels, model_name)
    train(models, data, params) 
开发者ID:PacktPublishing,项目名称:Advanced-Deep-Learning-with-Keras,代码行数:62,代码来源:cgan-mnist-4.3.1.py

示例7: build_and_train_models

# 需要导入模块: from tensorflow.keras import optimizers [as 别名]
# 或者: from tensorflow.keras.optimizers import RMSprop [as 别名]
def build_and_train_models():
    """Load the dataset, build LSGAN discriminator,
    generator, and adversarial models.
    Call the LSGAN train routine.
    """
    # load MNIST dataset
    (x_train, _), (_, _) = mnist.load_data()

    # reshape data for CNN as (28, 28, 1) and normalize
    image_size = x_train.shape[1]
    x_train = np.reshape(x_train, 
                         [-1, image_size, image_size, 1])
    x_train = x_train.astype('float32') / 255

    model_name = "lsgan_mnist"
    # network parameters
    # the latent or z vector is 100-dim
    latent_size = 100
    input_shape = (image_size, image_size, 1)
    batch_size = 64
    lr = 2e-4
    decay = 6e-8
    train_steps = 40000

    # build discriminator model
    inputs = Input(shape=input_shape, name='discriminator_input')
    discriminator = gan.discriminator(inputs, activation=None)
    # [1] uses Adam, but discriminator easily 
    # converges with RMSprop
    optimizer = RMSprop(lr=lr, decay=decay)
    # LSGAN uses MSE loss [2]
    discriminator.compile(loss='mse',
                          optimizer=optimizer,
                          metrics=['accuracy'])
    discriminator.summary()

    # build generator model
    input_shape = (latent_size, )
    inputs = Input(shape=input_shape, name='z_input')
    generator = gan.generator(inputs, image_size)
    generator.summary()

    # build adversarial model = generator + discriminator
    optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
    # freeze the weights of discriminator 
    # during adversarial training
    discriminator.trainable = False
    adversarial = Model(inputs,
                        discriminator(generator(inputs)),
                        name=model_name)
    # LSGAN uses MSE loss [2]
    adversarial.compile(loss='mse',
                        optimizer=optimizer,
                        metrics=['accuracy'])
    adversarial.summary()

    # train discriminator and adversarial networks
    models = (generator, discriminator, adversarial)
    params = (batch_size, latent_size, train_steps, model_name)
    gan.train(models, x_train, params) 
开发者ID:PacktPublishing,项目名称:Advanced-Deep-Learning-with-Keras,代码行数:62,代码来源:lsgan-mnist-5.2.1.py


注:本文中的tensorflow.keras.optimizers.RMSprop方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。