当前位置: 首页>>代码示例>>Python>>正文


Python models.model_from_json方法代码示例

本文整理汇总了Python中tensorflow.keras.models.model_from_json方法的典型用法代码示例。如果您正苦于以下问题:Python models.model_from_json方法的具体用法?Python models.model_from_json怎么用?Python models.model_from_json使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.models的用法示例。


在下文中一共展示了models.model_from_json方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def load(self, run_number: Union[str, int]='last', name: str='sklearn'):
        """
        Load a keras/tf.txt model from pickled instance

        Args:
            run_number: 'last' or integer value representing the run number
            name: name of the model

        Returns: scikit learn representation of the model

        """
        if run_number is not 'last':
            self.number = str(run_number)

        json_model_file = open(os.path.join(self.model_path, name + '.json'), "r").read()
        loaded_model = model_from_json(json_model_file)
        loaded_model.load_weights(os.path.join(self.model_path, name + '.h5'))
        return loaded_model 
开发者ID:carlomazzaferro,项目名称:kryptoflow,代码行数:20,代码来源:model.py

示例2: _store_tf

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def _store_tf(self, name, session):

        json_model_file = open(os.path.join(self.model_path, name + '.json'), "r").read()
        loaded_model = model_from_json(json_model_file)
        loaded_model.load_weights(os.path.join(self.model_path, name + '.h5'))

        builder = saved_model_builder.SavedModelBuilder(os.path.join(self.model_path, 'tf.txt'))
        signature = predict_signature_def(inputs={'states': loaded_model.input},
                                          outputs={'price': loaded_model.output})

        builder.add_meta_graph_and_variables(sess=session,
                                             tags=[tag_constants.SERVING],
                                             signature_def_map={'helpers': signature})
        builder.save()

        _logger.info("Saved tf.txt model to disk") 
开发者ID:carlomazzaferro,项目名称:kryptoflow,代码行数:18,代码来源:model.py

示例3: quantized_model_from_json

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def quantized_model_from_json(json_string, custom_objects=None):
  if not custom_objects:
    custom_objects = {}

  # let's make a deep copy to make sure our objects are not shared elsewhere
  custom_objects = copy.deepcopy(custom_objects)

  _add_supported_quantized_objects(custom_objects)

  qmodel = model_from_json(json_string, custom_objects=custom_objects)

  return qmodel 
开发者ID:google,项目名称:qkeras,代码行数:14,代码来源:utils.py

示例4: _organize_model

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def _organize_model(cls, model):
        """
        Instantiate the model with all hyper-parameters,
        set all model parameters and then return the model.
        Do not use directly. Use the designated classmethod to load a model.
        Parameters
        ----------
        cls : instance of model that inherits from `BaseModelPackage`
            a model instance
        model : dict
            Model dict containing hyper-parameters and model-parameters
        Returns
        -------
        model: instance of model that inherits from `BaseModelPackage`
            instance of the model class with hyper-parameters and
            model parameters set from the passed model dict
        """

        model_params = model.pop('model_params')
        hyper_params = model.pop('hyper_params')  # hyper-params

        # instantiate with hyper-parameters
        inst = cls(**hyper_params)

        if "model_" in model_params.keys():
            # set all model params
            inst.model_ = model_from_json(
                model_params.pop("model_"),
                custom_objects={
                    "LocalSquaredDistanceLayer": LocalSquaredDistanceLayer,
                    "GlobalMinPooling1D": GlobalMinPooling1D
                }
            )
            inst.set_weights(model_params.pop("model_weights_"))
        for p in model_params.keys():
            setattr(inst, p, model_params[p])
        inst._X_fit_dims = tuple(inst._X_fit_dims)
        inst._build_auxiliary_models()

        return inst 
开发者ID:tslearn-team,项目名称:tslearn,代码行数:42,代码来源:shapelets.py

示例5: load

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def load(path, filename, **kwargs):
    """Load network from file.

    Parameters
    ----------

    path: str
        Path to directory where to load model from.

    filename: str
        Name of file to load model from.

    Returns
    -------

    : dict[str, Union[keras.models.Sequential, function]]
        A dictionary of objects that constitute the input model. It must
        contain the following two keys:

        - 'model': keras.models.Sequential
            Keras model instance of the network.
        - 'val_fn': function
            Function that allows evaluating the original model.
    """

    filepath = str(os.path.join(path, filename))

    if os.path.exists(filepath + '.json'):
        model = models.model_from_json(open(filepath + '.json').read())
        try:
            model.load_weights(filepath + '.h5')
        except OSError:
            # Allows h5 files without a .h5 extension to be loaded.
            model.load_weights(filepath)
        # With this loading method, optimizer and loss cannot be recovered.
        # Could be specified by user, but since they are not really needed
        # at inference time, set them to the most common choice.
        # TODO: Proper reinstantiation should be doable since Keras2
        model.compile('sgd', 'categorical_crossentropy',
                      ['accuracy', metrics.top_k_categorical_accuracy])
    else:
        filepath_custom_objects = kwargs.get('filepath_custom_objects', None)
        if filepath_custom_objects is not None:
            filepath_custom_objects = str(filepath_custom_objects)  # python 2

        custom_dicts = assemble_custom_dict(
            get_custom_activations_dict(filepath_custom_objects),
            get_custom_layers_dict())
        try:
            model = models.load_model(filepath + '.h5', custom_dicts)
        except OSError as e:
            print(e)
            print("Trying to load without '.h5' extension.")
            model = models.load_model(filepath, custom_dicts)
        model.compile(model.optimizer, model.loss,
                      ['accuracy', metrics.top_k_categorical_accuracy])

    model.summary()
    return {'model': model, 'val_fn': model.evaluate} 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:61,代码来源:keras_input_lib.py

示例6: load_model

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def load_model(input_model_path, input_json_path=None, input_yaml_path=None):
    if not Path(input_model_path).exists():
        raise FileNotFoundError(
            'Model file `{}` does not exist.'.format(input_model_path))
    try:
        model = keras.models.load_model(input_model_path)
        return model
    except FileNotFoundError as err:
        logging.error('Input mode file (%s) does not exist.', FLAGS.input_model)
        raise err
    except ValueError as wrong_file_err:
        if input_json_path:
            if not Path(input_json_path).exists():
                raise FileNotFoundError(
                    'Model description json file `{}` does not exist.'.format(
                        input_json_path))
            try:
                model = model_from_json(open(str(input_json_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from json.")
                raise err
        elif input_yaml_path:
            if not Path(input_yaml_path).exists():
                raise FileNotFoundError(
                    'Model description yaml file `{}` does not exist.'.format(
                        input_yaml_path))
            try:
                model = model_from_yaml(open(str(input_yaml_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from yaml.")
                raise err
        else:
            logging.error(
                'Input file specified only holds the weights, and not '
                'the model definition. Save the model using '
                'model.save(filename.h5) which will contain the network '
                'architecture as well as its weights. '
                'If the model is saved using the '
                'model.save_weights(filename) function, either '
                'input_model_json or input_model_yaml flags should be set to '
                'to import the network architecture prior to loading the '
                'weights. \n'
                'Check the keras documentation for more details '
                '(https://keras.io/getting-started/faq/)')
            raise wrong_file_err 
开发者ID:PINTO0309,项目名称:PINTO_model_zoo,代码行数:51,代码来源:02_keras_to_tensorflow.py

示例7: prediction

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
    """ This function takes as input pretrained weights, noisy voice sound to denoise, predict
    the denoise sound and save it to disk.
    """

    # load json and create model
    json_file = open(weights_path+'/'+name_model+'.json', 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)
    # load weights into new model
    loaded_model.load_weights(weights_path+'/'+name_model+'.h5')
    print("Loaded model from disk")

    # Extracting noise and voice from folder and convert to numpy
    audio = audio_files_to_numpy(audio_dir_prediction, audio_input_prediction, sample_rate,
                                 frame_length, hop_length_frame, min_duration)

    #Dimensions of squared spectrogram
    dim_square_spec = int(n_fft / 2) + 1
    print(dim_square_spec)

    # Create Amplitude and phase of the sounds
    m_amp_db_audio,  m_pha_audio = numpy_audio_to_matrix_spectrogram(
        audio, dim_square_spec, n_fft, hop_length_fft)

    #global scaling to have distribution -1/1
    X_in = scaled_in(m_amp_db_audio)
    #Reshape for prediction
    X_in = X_in.reshape(X_in.shape[0],X_in.shape[1],X_in.shape[2],1)
    #Prediction using loaded network
    X_pred = loaded_model.predict(X_in)
    #Rescale back the noise model
    inv_sca_X_pred = inv_scaled_ou(X_pred)
    #Remove noise model from noisy speech
    X_denoise = m_amp_db_audio - inv_sca_X_pred[:,:,:,0]
    #Reconstruct audio from denoised spectrogram and phase
    print(X_denoise.shape)
    print(m_pha_audio.shape)
    print(frame_length)
    print(hop_length_fft)
    audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
    #Number of frames
    nb_samples = audio_denoise_recons.shape[0]
    #Save all frames in one file
    denoise_long = audio_denoise_recons.reshape(1, nb_samples * frame_length)*10
    librosa.output.write_wav(dir_save_prediction + audio_output_prediction, denoise_long[0, :], sample_rate) 
开发者ID:vbelz,项目名称:Speech-enhancement,代码行数:50,代码来源:prediction_denoise.py

示例8: load_input_model

# 需要导入模块: from tensorflow.keras import models [as 别名]
# 或者: from tensorflow.keras.models import model_from_json [as 别名]
def load_input_model(input_model_path, input_json_path=None, input_yaml_path=None, custom_objects=None):
    if not Path(input_model_path).exists():
        raise FileNotFoundError(
            'Model file `{}` does not exist.'.format(input_model_path))
    try:
        model = load_model(input_model_path, custom_objects=custom_objects)
        return model
    except FileNotFoundError as err:
        logging.error('Input mode file (%s) does not exist.', FLAGS.input_model)
        raise err
    except ValueError as wrong_file_err:
        if input_json_path:
            if not Path(input_json_path).exists():
                raise FileNotFoundError(
                    'Model description json file `{}` does not exist.'.format(
                        input_json_path))
            try:
                model = model_from_json(open(str(input_json_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from json.")
                raise err
        elif input_yaml_path:
            if not Path(input_yaml_path).exists():
                raise FileNotFoundError(
                    'Model description yaml file `{}` does not exist.'.format(
                        input_yaml_path))
            try:
                model = model_from_yaml(open(str(input_yaml_path)).read())
                model.load_weights(input_model_path)
                return model
            except Exception as err:
                logging.error("Couldn't load model from yaml.")
                raise err
        else:
            logging.error(
                'Input file specified only holds the weights, and not '
                'the model definition. Save the model using '
                'model.save(filename.h5) which will contain the network '
                'architecture as well as its weights. '
                'If the model is saved using the '
                'model.save_weights(filename) function, either '
                'input_model_json or input_model_yaml flags should be set to '
                'to import the network architecture prior to loading the '
                'weights. \n'
                'Check the keras documentation for more details '
                '(https://keras.io/getting-started/faq/)')
            raise wrong_file_err 
开发者ID:david8862,项目名称:keras-YOLOv3-model-set,代码行数:51,代码来源:keras_to_tensorflow.py


注:本文中的tensorflow.keras.models.model_from_json方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。