本文整理汇总了Python中tensorflow.keras.losses方法的典型用法代码示例。如果您正苦于以下问题:Python keras.losses方法的具体用法?Python keras.losses怎么用?Python keras.losses使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras
的用法示例。
在下文中一共展示了keras.losses方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: init_losses
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def init_losses(loss_string_list, logger=None, **kwargs):
"""
Takes a list of strings each naming a loss function to return. The string
name should correspond to a function or class that is an attribute of
either the tensorflow.keras.losses or mpunet.evaluate.losses
modules.
The returned values are either references to the loss functions to use, or
initialized loss classes for some custom losses (used when the loss
requires certain parameters to be set).
Args:
loss_string_list: (list) A list of strings each naming a loss to
return
logger: (Logger) An optional Logger object
**kwargs: (dict) Parameters that will be passed to all class
loss functions (i.e. not to functions)
Returns:
A list of length(loss_string_list) of loss functions or initialized
classes
"""
return _init(
loss_string_list, losses, custom_losses, logger, **kwargs
)
示例2: compile_model
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def compile_model(self, optimizer, optimizer_kwargs, loss, metrics, **kwargs):
"""
Compile the stored tf.keras Model instance stored in self.model
Sets the loss function, optimizer and metrics
Args:
optimizer: (string) The name of a tf.keras.optimizers Optimizer
optimizer_kwargs: (dict) Key-word arguments passed to the Optimizer
loss: (string) The name of a tf.keras.losses or
MultiPlanarUnet loss function
metrics: (list) List of tf.keras.metrics or
MultiPlanarUNet metrics.
**kwargs: (dict) Key-word arguments passed to losses
and/or metrics that accept such.
"""
# Make sure sparse metrics and loss are specified as sparse
metrics = ensure_list_or_tuple(metrics)
losses = ensure_list_or_tuple(loss)
ensure_sparse(metrics+losses)
# Initialize optimizer
optimizer = optimizers.__dict__[optimizer]
optimizer = optimizer(**optimizer_kwargs)
# Initialize loss(es) and metrics from tf.keras or MultiPlanarUNet
losses = init_losses(losses, self.logger, **kwargs)
metrics = init_metrics(metrics, self.logger, **kwargs)
# Compile the model
self.model.compile(optimizer=optimizer, loss=losses, metrics=metrics)
self.logger("Optimizer: %s" % optimizer)
self.logger("Loss funcs: %s" % losses)
self.logger("Metrics: %s" % init_metrics)
return self
示例3: _init
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def _init(string_list, tf_funcs, custom_funcs, logger=None, **kwargs):
"""
Helper for 'init_losses' or 'init_metrics'.
Please refer to their docstrings.
Args:
string_list: (list) List of strings, each giving a name of a metric
or loss to use for training. The name should
refer to a function or class in either tf_funcs
or custom_funcs modules.
tf_funcs: (module) A Tensorflow.keras module of losses or metrics,
or a list of various modules to look through.
custom_funcs: (module) A custom module or losses or metrics
logger: (Logger) A Logger object
**kwargs: (dict) Parameters passed to all losses or metrics which
are represented by a class (i.e. not a function)
Returns:
A list of len(string_list) of initialized classes of losses or metrics
or references to loss or metric functions.
"""
initialized = []
tf_funcs = ensure_list_or_tuple(tf_funcs)
for func_or_class in ensure_list_or_tuple(string_list):
modules_found = list(filter(None, [getattr(m, func_or_class, None)
for m in tf_funcs]))
if modules_found:
initialized.append(modules_found[0]) # return the first found
else:
# Fall back to look in custom module
initialized.append(getattr(custom_funcs, func_or_class))
return initialized
示例4: compile
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def compile(self, model: Model, optimizer_name: str, loss_name: str,
learning_rate: Optional[Union[float, List[float]]],
learning_rate_decay: Optional[Union[float, str]]) -> Model:
"""
Compile model with given optimizer and loss
Args:
model: keras uncompiled model
optimizer_name: name of optimizer from keras.optimizers
loss_name: loss function name (from keras.losses)
learning_rate: learning rate.
learning_rate_decay: learning rate decay.
Returns:
"""
optimizer_func = getattr(tensorflow.keras.optimizers, optimizer_name, None)
if callable(optimizer_func):
if isinstance(learning_rate, float) and isinstance(learning_rate_decay, float):
# in this case decay will be either given in config or, by default, learning_rate_decay=0.
self.optimizer = optimizer_func(lr=learning_rate, decay=learning_rate_decay)
else:
self.optimizer = optimizer_func()
else:
raise AttributeError("Optimizer {} is not defined in `tensorflow.keras.optimizers`".format(optimizer_name))
loss_func = getattr(tensorflow.keras.losses, loss_name, None)
if callable(loss_func):
loss = loss_func
else:
raise AttributeError("Loss {} is not defined".format(loss_name))
model.compile(optimizer=self.optimizer,
loss=loss)
return model
示例5: infer_metric_direction
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def infer_metric_direction(metric):
# Handle str input and get canonical object.
if isinstance(metric, six.string_types):
metric_name = metric
if metric_name.startswith('val_'):
metric_name = metric_name.replace('val_', '', 1)
if metric_name.startswith('weighted_'):
metric_name = metric_name.replace('weighted_', '', 1)
# Special-cases (from `keras/engine/training_utils.py`)
if metric_name in {'loss', 'crossentropy', 'ce'}:
return 'min'
elif metric_name == 'acc':
return 'max'
try:
metric = keras.metrics.get(metric_name)
except ValueError:
try:
metric = keras.losses.get(metric_name)
except:
# Direction can't be inferred.
return None
# Metric class, Loss class, or function.
if isinstance(metric, (keras.metrics.Metric, keras.losses.Loss)):
name = metric.__class__.__name__
if name == 'MeanMetricWrapper':
name = metric._fn.__name__
else:
name = metric.__name__
if name in _MAX_METRICS or name in _MAX_METRIC_FNS:
return 'max'
elif hasattr(keras.metrics, name) or hasattr(keras.losses, name):
return 'min'
# Direction can't be inferred.
return None
示例6: inject_global_losses
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def inject_global_losses(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
kwargs['losses'] = _KERAS_LOSSES
return func(*args, **kwargs)
return wrapper
示例7: build
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def build(self, inputdims):
if self.NN_parameters['architecture'] is None:
self.loadDefaultArchitecture()
print(self.NN_parameters['architecture'])
inputs = [ Input(shape=(inputdim,)) for inputdim in inputdims ]
outputs = inputs
for layer in self.NN_parameters['architecture']:
if layer['type'].lower() == 'dense':
outputs = [ Dense(layer['neurons'], activation=layer['activation'])(output)
for output in outputs ]
elif layer['type'].lower() == 'dropout':
outputs = [ Dropout(layer['rate'], seed=self.seed)(output)
for output in outputs]
else:
print("Unknown layer type.")
outputs = [Dense(self.sub_outputdim, activation="softplus")(output)
for output in outputs]
model = Model(inputs=inputs, outputs=outputs)
loss = self.NN_parameters['loss']
if loss in [k for k, v in globals().items() if callable(v)]:
# if loss is a defined function
loss = eval(self.NN_parameters['loss'])
if not callable(loss):
# it is defined in Keras
if hasattr(keras.losses, loss):
loss = getattr(keras.losses, loss)
else:
print('Unknown loss: {}. Aborting.'.format(loss))
exit(1)
model.compile(optimizer=keras.optimizers.Adam(lr=self.NN_parameters['learning_rate']),
loss=loss)
return model
示例8: set_framework
# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import losses [as 别名]
def set_framework(name):
"""Set framework for Segmentation Models
Args:
name (str): one of ``keras``, ``tf.keras``, case insensitive.
Raises:
ValueError: in case of incorrect framework name.
ImportError: in case framework is not installed.
"""
name = name.lower()
if name == _KERAS_FRAMEWORK_NAME:
import keras
import efficientnet.keras # init custom objects
elif name == _TF_KERAS_FRAMEWORK_NAME:
from tensorflow import keras
import efficientnet.tfkeras # init custom objects
else:
raise ValueError('Not correct module name `{}`, use `{}` or `{}`'.format(
name, _KERAS_FRAMEWORK_NAME, _TF_KERAS_FRAMEWORK_NAME))
global _KERAS_BACKEND, _KERAS_LAYERS, _KERAS_MODELS
global _KERAS_UTILS, _KERAS_LOSSES, _KERAS_FRAMEWORK
_KERAS_FRAMEWORK = name
_KERAS_BACKEND = keras.backend
_KERAS_LAYERS = keras.layers
_KERAS_MODELS = keras.models
_KERAS_UTILS = keras.utils
_KERAS_LOSSES = keras.losses
# allow losses/metrics get keras submodules
base.KerasObject.set_submodules(
backend=keras.backend,
layers=keras.layers,
models=keras.models,
utils=keras.utils,
)
# set default framework